Forall Context

Genghan Zhang

May 2022

1 Introduction

When can we determine the reduction of an Einstein notation with provenance graph? In other
words, the question is whether a workspace will be added to one or multiple times? It’s safe to
assume that += is used if a workspace is accessed multiple times, otherwise = (Theorem 1). So
how can we infer such information from the concrete index notation?

2 IndexSetRel

The first step is the relation between the set of indexVars in [hs and rhs. We denote them as £ and
R. We just assume the reduction operator is +=. We enumerate all the possible relations and find
that only for two relations we can’t determine the reduction operator directly from the relation.

Table 1: Relation, operator and example

Case Relation Operator example

1 (LNAR#AD)NLNR#AL)AN(LNR#TR) += ws(i,j) = A(i, k) * B(k,7)

2 LSR += ws(i) = A(i, k) = B(i, k)

3 RGL = ws(i, k) = A(i) * B(1)
+= ws(il) = A7) * B(i)

4 LAR=0 L#O R#0O

(£N )AL #O)N (R # D) _ Brew(il) = B(i)

5 LT += ws(i11) = Apew(i1) * Bpew(il)

= ws(i) = A(3) * B(17)

Case 4 can only happen in provenance graph, because such Einstein notation is not valid if
indexes iterate on each dimension. However, if we do split(i,i0,41) first, i1 can be restored using i.
Therefore, indexes actually iterate on part the shared dimension (the reduction dimension of the
child node). How are operators in Case 4 and 5 determined? That’s why we need Forall Context.

3 Forall Context

We only consider the statement without sequence. First, we introduce last level forall (LLF).
LLF :=Vpger assignment. Each LLF has a forall context. We build a forall context tree (FCT)
based on the provenance graph to define forall context.



3.1 Build FCT

Traverse the provenance graph. When we meet a whereNode, if FCT is empty, add an applicant
node (AN) and put @ into it (which is called content of an AN). Otherwise, assign a left child and
a right child to the current AN and put © into them. The left child of an AN corresponds to the
consumer of current whereNode, and the right to the producer. When we meet a forallNode, add
the indexVar to the content of current AN. Content of leaves of FCT will be the indexVar of LLF
in the provenance graph.

Definition 1. Forall Context of an LLF is defined to be the union of ANs’ contents along the path
from the root to the leaf corresponding to the LLF.

Theorem 1. If a workspace is accessed only once in the current forall context, then the operator
must be = , otherwise it must be +=.
3.2 Example

For the IndexStmts below:

Stmt1l = suchthat(where(forall(il, A += ws(il)), forall(iO, where(where(forall(iil,
ws(il1l) += B_new(il) * C_new(il)), forall(il, C_new(il) = C(i))), forall(il,
B_new(il) = B(i))))), split(i, i0, i1, 32))

Stmt2 = suchthat(where(forall(i0O, A += ws(i0)), forall(iO, forall(il,
ws(i0) += B(i) * C(1)))), Split(i, i0o, i1, 32))

Stmt3 = suchthat(where(forall(iO, A += ws(i0)), forall(iO, where(where(forall(iil,
ws(i0) += B_new(il) * C_new(il)), forall(il, C_mew(il) = C(i))), forall(il,
B_new(il) = B(1))))), split(i, i0, i1, 32))

the FCTs are in figure 1:

.

] Lo | Liod ]
Ca] [a]
(a) FCT of Stmtl (b) FCT of Stmt2 (c¢) FCT of Stmt3

Figure 1: FCT of the examples

The forall context of LLFs in Stmtl are {i1}, {i0,?1},{é0,91},{%0,?1}. The forall context of
LLFs in Stmt2 are {i;},{io,%1}. The depth of an LLF is defined as the number of elements in the
leaf. All LLFs in Stmtl have depth 1. In Stmt2, the left leaf has depth 1, and the right leaf has
depth 2.

3.3 Code
The code is in index_notation.cpp IndexSetRel Assignment::getIndexSetRel().



4 Redundant IndexStmt Rewrite

4.1 Visitor

Algorithm 1: RedundantVisitor
Data: to_change <— empty, ctx_stack < empty, num_stack < empty
Function visit (ForallNode):
stackPush(forallVar);
Update num_stack;

end

Function visit (WhereNode):

num_stack.push_back(0);

visit (consumer);

stackPop();

num_stack.push_back(0);

visit (producer);

stackPopQ);

end

Function visit (AssignmentNode):

a < current_node;

if IndexSetRel(a) is equal then

if some indexVar in lhs has sibling in ctx_stack then
to_change.push_back(a);

end

end

if IndexSetRel(a) is none then

if ctx_stack except the top contains indexVars in lhs then
to_change.push_back(a);

end

end

end
return to_change;

In the visit function for Assignment Nodes, the top of num_stack describes the depth of LLF
and the top of ctx_stack is the indexVar of LLF.

None (mutually exclusive): If ctz_stack except the top contains indexVars in rhs, the indexVar
of outer forall must be the reduction dimension. Therefore, the operator must be +=.

Equal: If some indexVar in rhs has sibling in ctx_stack, the indexVar of outer forall must be
the reduction dimension. Therefore, the operator must be +=.

4.2 Rewriter

Change the AssignmentNodes in to_change to “+="

4.3 Code

The code is in Precompute::apply, after the PrecomputeRewriter is applied.



	Introduction
	IndexSetRel
	Forall Context
	Build FCT
	Example
	Code

	Redundant IndexStmt Rewrite
	Visitor
	Rewriter
	Code


