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Sparse Workspace

1 Motivation

General tensor assembly challenge [1] is still not fully solved in the sparse com-
pilation theory. Sparse iteration model [2] formulates the co-iteration over any
number of sparse and dense tensors. It targets the data generation problem.
Static format transformation is solved by [3]. It targets the data write-back
problem. However, they don’t directly bridge the dynamic input and arbitrary
output. Therefore, they don’t solve the general tensor assembly challenge.
Inspired by the workspace [4] idea, we propose sparse workspace to solve
the general tensor assembly challenge. Sparse workspace aims to be a flexible
sparse compilation algorithm that converts any sparse co-iteration to output
with any topological order

2 Background

Tensor is an organization of points. The points are organized in modes. Each
point is defined as a list of coordinates and value. The letters in parentheses are
called iterators. They are the name of modes. One iterator has only one length,
and its level type depends on the host tensor. As is shown in Fig. 1(a), the
first mode i equals 2, the second mode j equals 1, and the value equals green.
Sparse tensors are stored in a special mode order, which we term topological
order. The sparse tensor can be accessed most efficiently in the topological
order. Though the sparse tensor can also be accessed in other orders, it either
requires extra memory or is asymptotically more complex. There’s an exception
called Knuth’s format[5], which has equal cost of being accessed in any order.
Fig. 1(b)(c) shows two example of topological order. Both sparse matrices’ first
levels are dense, and the second are compressed. However, they are different
in topological order. We use → to annotate such order. We refer readers to [6]
for the details of level types.

After defining sparse tensors and topological order, we can introduce
expressions. One expression is composed of tensor access and arithmetic oper-
ations. The basic expression is assignment. There are two types of assignment:
discordant and concordant. If both sides have the same(different) topologi-
cal order, then we define them as concordant(discordant). Fig. 1(d) illustrates
the concordant assignment and Fig. 1(e) illustrates discordant assignment. We
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use ∀ to define the loop order. We consider = an operator like other arith-
metic operators (+ − ×÷). An expression containing more than one tensor
belong to the accumulation problem. The accumulation problem is composed
of co-iteration and assignment. TACO’s sparse iteration theory assumes that
operands are accessed in the same topological order. Fig. 1(f)(g) illustrate
concordant accumulation and discordant accumulation respectively.
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Ai→j(ij)

Aj→i(ij)

∀i ∀jAj→i( ji) = Bi→j( ji)

∀i ∀jAi→j( ji) = Bi→j( ji)

∀i ∀k∀jAj→i(ij) = Bi→k(ik) × Ck→j(kj)

∀i ∀j ∀kAi→j(ij) = Bi→k(ik) × Cj→k(kj)

Fig. 1 Illustration of sparse tensors, concordant/discordant assignment/accumulation

Formally, concrete index notation (CIN)[1] is used to describe how an index
expression is computed. However, it can’t express the topological order con-
version which is the key operation of discordant accumulation. Therefore, we
extend the original CIN. To be specific, we change the definition of access
and add order and header. As is shown in Fig. 2 We use order to annotate
topological order and an extra header to describe conversion.

Fig. 2 Illustration of extended concrete index notation

Workspace [4] (dense workspace) can only solve the concordant accumula-
tion problem. It detects the reduction iterator, and assumes that the outer-loop
iterator can reuse the workspace. Internally, it uses a bitmap to record the
generated non-zero elements. As shown in Fig. 3, the bold letter denotes the
reduction iterator, and the workspace size equals the multiplication of the
length of all the iterators behind the reduction iterator.
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i → k → ji → j → k

i → k → j → m

∀i ∀jAi→j(ij) = Bi→k(ik) × Cj→k(kj) ∀i(∀jAi→j(ij) = wj( j) where wj( j) + = Bi→k(ik) × Ck→j(kj))
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Fig. 3 Illustration of dense workspace

However, the dense workspace can’t support discordant accumulation
because of its assumption on workspace reuse and direct insertion to output.
For example, in Fig. 4(b) current dense workspace is not enough. It requires
another I × J memory to store all the intermediate data. Moreover, the size

 is disconcordant with ∀i ∀j j → i∀i(∀k∀jAj→i(ij) = wj( j) where wj( j) + = Bi→k(ik) × Ck→j(kj))
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Fig. 4 Illustration of workspace reuse and direct insertion assumption

of a dense workspace is determined by data. Such variation will hurt the per-
formance. For example, Fig. 3(c) allocates a M × J dense workspace. Such
memory size is decided by input data and not controlled by users. The extra
memory in Fig. 4(b) is also invisible to users. Besides, the workspace reuse
assumption is so strong that it restricts the topological order of tensors. For
example, i → j → m is one of the 6 possible topological orders of A and the
only one that can be handled by dense workspace.

In summary, current dense workspace has two drawbacks. First, it can’t
correctly convert input points to output with arbitrary topological order. Sec-
ond, users have little control over the algorithm, making tuning performance
challenging. These motivate us to design sparse workspace, a flexible sparse
compilation algorithm that converts any sparse co-iteration to output with
any topological order.
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Fig. 5 Workflow of sparse workspace

3 Algorithm Design

Fig. 5 summarizes the whole workflow of sparse workspace. In the front end
we extend CIN to include topological order. In the middle end, we represent
point with Point struct. As the co-iteration goes, we track and en-concordant
the order. This is the key operation that solves the discordant problem and en-
concordant input streaming points and the output. Then we create a static size
intermediate tensor called Acc Array. This provides users with control over the
size of intermediate results. Next, we design a concordant temporary tensor
called All Array. It is stored in a pivot sparse format. Using All Array, we
transform the discordant accumulation problem to the static format conversion
problem, which has been solved by [3]. In the back end, we insert definitions
for TryInsert, Sort, Contraction, and Clear functions. They are exposed as low
level intermediate representation(LLIR)[2] in the middle end.

Acc is short for accumulation. It is a temporary container that supports
appending and iteration in order. From the memory view, Acc is a fixed-size
array of Points. The point represents a temporary point in the coordinate
space. In the memory, an N-order point is a struct of the whole coordinate path
with N coordinates and a value. Acc has user-defined management strategy
and size. For example, Acc can be managed as a hash table or a coordi-
nate list. They have different memory control logic. All is a struct of arrays
{crds[N ][capacity], val[capacity]}. The arrays store the full coordinate path of
each output coordinate point.

The design of sparse workspace also follows the core idea of decoupling data
structures from computation [7]. Alg. 1 shows the whole algorithm. The algo-
rithm has five important parts: TryInsert, Clear, Sort, Contraction, and Pack.
All of these five functions except Pack depend on the management strategy
of Acc. For example, Alg. 2 and Alg. 3 show the TryInsert for hash table and
coordinate list, respectively. TryInsert tries to insert a newly generated point
into Acc. Clear function clears the Acc after being contracted. Sort sorts Acc in
the lexicographic order to prepare it for contraction. It can be in the ascend or
descending order. Contraction contracts points in Acc into All. Pack packs All
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to the output tensor, using current TACO’s format conversion code. Though
the sort and contraction can be fused as merge-sort to reduce the complexity,
we separate them into two stages here as a general description. Moreover, All
Array is just a logical data structure; the real implementation can be several
arrays. This will prevent memory copying from the vertical to the horizontal
storage.

Algorithm 1 Sparse Workspace

Require: Value arrays V alt of TACO tensor t. Accumulator Acc. All output
non-zero All. Final output tensor Out

1: Allocate(Acc)
2: while there’s still non-zero do
3: Iterate on one level: track and en-concordant crds
4: if reach the last level then
5: TryInsert(crds,Expression({V alt}), Acc)
6: if Acc.full then
7: Contraction(Acc,All)
8: Clear(Acc)
9: TryInsert(crds,Expression({V alt}), Acc)

10: end if
11: end if
12: end while
13: if Acc.notEmpty then
14: Sort(Acc)
15: Contraction(Acc,All)
16: Clear(Acc)
17: end if
18: pack(All, Out)

4 Complexity analysis

Though current TACO can’t generate code for discordant accumulation, it has
provided basic modules that can be assembled to solve some discordant accu-
mulation problems. We claim that there’s no asymptotic difference between
such an assembly solution and our sparse workspace. Theoretically, however,
sparse workspace can be tuned to outperform the assembly solution. For sparse
tensor algebra, asymptotic improvement is brought by the empirical observa-
tion: nnz ≪ shape [1]. For example, an Amazon product review tensor can
have 8 billion zeros for every nonzero [8]. In other words, nnz

shape ∼ 1.25× 10−10

which is extremely small! Because both sparse workspace and assembly solu-
tion use the same sparse iteration model to explore all the opportunities for
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Algorithm 2 Hash table TryInsert

Require: The expression result of all tensors val = Expression({V alt}).
The full coordinate path of the result Q[:] = getFullCoord({t}). The
accumulator Acc

1: hashkey ←Hashfunc(Q[:])
2: bitmap.empty()
3: while bitmap.has(hashkey) do
4: if !Acc.conflict(hashkey) then
5: Acc[hashkey]← {Q[:], val}
6: Acc.size++
7: Acc.full← False
8: return
9: else

10: if Acc[hashkey] == {Q[:], val} then
11: Acc[hashkey].val+ = val
12: Acc.full← False
13: return
14: else
15: bitmap.insert(hashkey)
16: hashkey ←Probe(hashkey,Acc)
17: end if
18: end if
19: end while
20: Acc.full← Ture
21: Sort(Acc)
22: Acc.size← Acc.capacity

asymptotic improvement, they have the same asymptotic complexity [9]. How-
ever, our analysis shows that sparse workspace can be tuned to outperform
assembly solution.

Fig. 6 shows an example of complexity analysis. The CIN of assem-
bly solution is: sequence (∀i∀jAj→i(ij) = Ti→j(ij),∀i(∀k∀jTj→i(ij) =
wj(j)wherewj(j)+ = Bi→k(ik)× Ck→j(kj))). The CIN of sparse workspace

is: ∀i(∀k∀jTj→i(ij) = wj→i
i→j (ij)wherewj→i

i→j (ij)+ = Bi→k(ik) × Ck→j(kj)).
Since the asymptotic complexity is the same, we don’t consider arithmetic
operations. We count two types of instruction: Store(St), and Load and
Store(LaS). We use the uppercase of an iterator to denote its length. There-
fore, A is I × K, B is K × J , and C is I × J . We also omit the memory
allocation cost because it is nearly the same. Block 1 of (a)and(b) have the
same number of loop iterations, which we denote as L. We denote the length
of Acc Array as a. We assume value and index are both 4 bytes. Therefore,
InsertFail happens about T = ⌈L/a⌉ times, and we use l to denote the l-
th appearance of InsertFail. nnz(L) denotes the total times of bitmap being
zero, which happens at the inner-loop of Block a1. nnz(C) denotes the number
of non-zero output elements. Fig. 7 lists all the costs of assembly solution and



Springer Nature 2021 LATEX template

Sparse Workspace 7

Algorithm 3 Coordinate list TryInsert

Require: The expression result of all tensors val = Expression({V alt}).
The full coordinate path of the result Q[:] = getFullCoord({t}). The
accumulator Acc

1: if Acc.size == Acc.capacity then
2: Acc.full⇐ Ture
3: Sort(Acc)
4: else
5: Acc[Acc.size]⇐ {Q[:], val}
6: Acc.size++
7: Acc.full⇐ False
8: end if

sparse workspace. We assume the sort of array with n elements is nlog2(n).

The total cost of sort in the inner-loop of Block a1 is
∑I−1

i=0 rilog2(ri), where ri
denotes the number of non-zeros in the i-th row of C. To simply our notation,
we use r̄ that

∑I−1
i=0 rilog2(ri) = r̄log2r̄.

Then we can sum the costs in the Fig. 7. The cost of assembly solution is:

(L+ nnz(L))[St] + (Ir̄log(r̄) + 2nnz(L) + 4J + 3nnz(C)[LaS] (1)

The cost of sparse workspace is:

3L[St] + (J + nnz(C) + 3Llog2(3a) + 3(
1

2
T 2 +

3

2
T ))[LaS] (2)

From Equation 1and 2, we can find that both input and output sparse patterns
determine their costs. Therefore, sparse workspace can be tuned to outperform
assembly solution.

for (int i = 0; i < I; i++) { 
  for (int kA = A_pos[i]; kA < A_pos[i+1]; kA++) { 
    int k = A_crd[kA]; 
    for (int jB = B_pos[k]; jB < B_pos[k]; jB++) { 
      int j = B_crd[jB]; 
      if (bitmap[j]) { 
        W_val[j] += A_val[kA] * B_val[jB]; 
      } 
      else { 
        W_crd[W_crd_size] = j; 
        W_val[j] = A_val[kA] * B_val[jB]; 
        bitmap[j] = 1; 
      } 
    } 
  } 
  sort(W_crd,W_crd_size); 
  for (int W_loc = 0; W_loc < W_crd_size; W_loc++) { 
    int jW = W_crd[W_loc]; 
    int jT = T_pos[i]; 
    check(T_crd); 
    T_crd[jT] = W_crd[jW]; 
    T_val[jT] = W_val[jW]; 
    bitmap[jW] = 0; 
    W_val[jW] = 0; 
    T_pos[i] = T_pos[i] + 1; 
  } 
}

for (int i = 0; i < I; i++) { 
  Tpos[1] = i; 
  for (int kA = A_pos[i]; kA < A_pos[i+1]; kA++) { 
    int k = A_crd[kA]; 
    for (int jB = B_pos[k]; jB < B_pos[k+1]; jB++) { 
      Tpos[0] = j; 
      double val = A_val[kA]*B_val[jB]; 
      bool InsertFail = TryInsert(T_acc,{T_pos,val}); 
      if(InsertFail) { 
        Resize(T_acc); 
        Merge(T_acc, T_all); 
        Clear(T_acc); 
        TryInsert(T_acc,{T_pos,val}); 
      } 
    } 
  } 
} 

for (int pC = 0; pC < size(T_all); pC++) { 
  int j = T_all[pC].crds[0]; 
  C_attr_nnz[j] = C_attr_nnz[j] + 1; 
  C_crd[pC] = T_all[pC].crds[1]; 
  C_val = T_all[pC].val; 
} 

for (int j=0; j<J; j++) { 
  C_pos[j+1] = C_pos[j] + C_attr_nnz[j]; 
} 
C_pos[0] = 0;

for (int i = 0; i<I; i++) { 
  T_pos[i+1] = T_pos[i]; 
} 
T_pos[0] = 0; 

for (int i = 0; i<I; i++) { 
  for (int jT = A_pos[i]; jT < A_pos[i+1]; jT++) { 
    C_attr_nnz[j] = C_attr_nnz[j] + 1; 
  } 
} 

for (int j=0; j<J; j++) { 
  C_pos[j+1] = C_pos[j] + C_attr_nnz[j]; 
} 

for (int i = 0; i<I; i++) { 
  for (int jT = T_pos[i]; jT < T_pos[i+1]; jT++) { 
    int j = T_crd[jT]; 
    int jC = C_pos[j]; 
    C_crd[jC] = i; 
    C_val[jC] = T_val[jT]; 
    C_pos[j] = C_pos[j] + 1; 
  } 
} 

for (int j = 0; j<J; j++) { 
  C_pos[j+1] = C_pos[j]; 
} 
C_pos[0] = 0;

1
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Fig. 6 Comparison of codes between assembly solution and sparse workspace. The color of
Block a1 is darker than that of Block b1, meaning they have the same steps of outer-loop
iteration, but Block a2 costs more than a1. The same rule is applied to coloring all the blocks.
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Block Description Cost

- TryInsert

- Sort

- Merge

a1 L * Write to W_val + nnz(L) * Write to W_crd + I *sort + nnz(L) * Write 
to (T_crd + T_val)

a2,a6,b3 -

a3 -

a4 -

a5 nnz(C) * Write to (C_crd + C_val) 

b1 L * TryInsert + L/a * (Resize+Sort+Merge) 

b2 nnz(T) * Load and Store + In-place Zero Cost Copy

3[St]
3alog2(3a)[LaS]
3a(l + 1)[LaS]

L[St] + nnz(L)[St] + Ir̄log(r̄)[LaS] + 2nnz(L)[LaS]

2nnz(C)[LaS]

nnz(C)[LaS]
J[LaS]

2J[LaS]

3L[St] + 3Llog2(3a)[LaS] + 3( 1
2 T2 + 3

2 T )[LaS]
nnz(C)[LaS]

Fig. 7 Cost analysis of assembly solution and sparse workspace. The dash in Block means
the entry isn’t bound with a block. The dash in Description means the entry’s functionality
is apparent and does not need more explanation. “X * Write to Y” means 4X element stored
to array Y. The cost of “Resize” is omitted as mentioned before. “In-place Zero Cost Copy”
means that elements stored in the logical array of structs can be transformed to logical
arrays with zero cost.

5 Implementation

We create a new subclass of Format called SpFormat. It stores the two roles
of Acc to the content of TensorVar. It also transports the user-defined infor-
mation of Acc, such as management strategy and size from the user interface
to the lower process. We use the where statement in CIN to express sparse
workspace. Therefore, tensorVar that holds the sparse workspace must be the
lhs of the producer. In lower process, tensorVars will be further transformed
to iterators per level. The level-type of tensorVar decides the iterator’s level
attribute and level function. Except the Pack function, the workspace algo-
rithm is executed in the producer side. In TACO, consumer is lowered before
producer. Since the sparse workspace acts like a COO tensor in the consumer
side, its relevant iterators will be recreated using the COO format. After the
consumer is lowered, they will be recreated using the dense format which is
the illusion for producer side. crds is tracked during the lowering of forall. In
each level, crds is appended with the last of current coordinates. In the low-
ering of ForallBody, compute statement will be undefined if it contains sparse
workspace tensor variable because relevant variable of sparse workspace are
not registered globally. Such design may seem unsafe, but it actually turns
to be effective. First, it can isolate relevant variables from other variables to
reduce the risk of bug. Second, it serves as a label, which means that TCC
functions can be done when the compute statement if undefined.

6 Compatibility with Other Schedules

These techniques are compatible with other schedules in TACO, except
parallelize.
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Fuse. This schedule transforms the iterator from coordinate space to posi-
tion space. Though the sparse workspace tracks the iterator in the coordinate
space, iterators all have functions from position space back to coordinate space.

Where. Multiple sparse workspaces can co-exist. Because the iterators
are also tensor dependent, changing the role of one sparse workspace will not
influence others.

Split. The split schedule creates two new index variables for one index vari-
able. Because the size of All is decided after every generated point is inserted,
sparse workspace for child index variables is feasible.

7 Related works

Many optimizations for sparse tensor algebra have been proposed on CPU
and GPU. Some representative works on SpGEMM(sparse matrix-sparse
matrix multiplication) are listed in Table 1. The criteria are (1) clear
explanation of the workspace optimization, (2) code is available or clearly
explained by other materials. Various domain specific architectures have
been developed to accelerate sparse tensor algebra [10, 11]. Take SpGEMM
C(ij) = A(ik) × B(kj) as an example. [12, 13] accelerate outer-product e.g.
Ci→j(ij) = Ak→i(ik)× Bk→j(kj), [14] accelerates Gustavson’s algorithm e.g.
Ci→j(ij) = Ai→k(ik)×Bk→j(kj), and [15] accelerates inner-product algorithm
e.g. Ci→j(ij) = Ai→k(ik)×Bj→k(kj). The most similar one is MeNDA [16]. It
uses COO as the intermediate storage and accelerates the sparse matrix trans-
position. The All array with 2 dimensions is exactly COO format. That shows
the potential of sparse workspace being accelerated by novel architecture.

Table 1 Summary of existing sort-based and hash-based accumulators

Paper Year Platform Method
CUSP[17] 2015 Nvidia Tesla/CPU ESC+COO+COO

AC-SpGEMM[18] 2019 Nvidia Tesla and Titan ESC+HiCOO
cuSPARSE[19] 2012 Nvidia Tesla Hash+CSR+CSR
nSPARSE[20] 2017 Nvidia Pascal Hash+CSR+CSR
bhSPARSE[21] 2014 Nvidia Titan/CPU Hash+Heap+Merge
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