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Abstract

Sparse compiler is a promising solution for sparse tensor algebra opti-
mization. In compiler implementation, reduction in sparse-dense hybrid
algebra plays a key role in performance. Though GPU provides various
reduction semantics that can better utilize the parallel computing and
memory bandwidth capacity, the central question is: how to elevate the
flexible reduction semantics to sparse compilation theory that assumes
serial execution. Specifically, we have to tackle two main challenges: (1)
there are wasted parallelism by adopting static synchronization granular-
ity (2) static reduction strategy limits optimization space exploration. We
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propose Sgap: segment group and atomic parallelism to solve these
problems. Atomic parallelism captures the flexible reduction semantics
to systematically analyze the optimization space of sparse-dense hybrid
algebra on GPU. It is a new optimization technique beyond current
compiler-based and open-source runtime libraries. Segment group ele-
vates the flexible reduction semantics to suitable levels of abstraction
in the sparse compilation theory. It adopts changeable group size and
user-defined reduction strategy to solve challenge (1) and (2), respec-
tively. Finally, we use GPU sparse matrix-matrix multiplication (SpMM)
on the TACO compiler as a use case to demonstrate the effective-
ness of segment group in reduction semantics elevation. We achieve
up to 1.2× speedup over the original TACO’s SpMM kernels. We
also apply new optimization techniques found by atomic parallelism to
an open-source state-of-the-art SpMM library dgSPARSE. We achieve
1.6× ∼ 2.3× speedup on the algorithm tuned with atomic parallelism.

Keywords: Sparse compiler, Sparse tensor algebra, SpMM, GPU

1 Introduction

Sparse tensor algebra has been widely used in many fields, including machine
learning [1–3], data analysis [4], scientific computing [5, 6], graph processing [7].
However, it is challenging to optimize sparse tensor applications because of
diversity in computation patterns and irregularity in memory access behav-
ior. Sparse compilers have shown great potential to solve this problem. Sparse
compilers can use one monolithic theory to express diverse data formats
and operations, and provide flexible user interface, enabling users to explore
the optimization space given data and hardware. Therefore, more and more
researchers are turning to sparse compilers for general solutions [8–15].

However, it is challenging to design a sparse compiler that can both compile
various algebras and generate highly optimized code. In particular, sparse-
dense hybrid algebra on GPU brings unique challenges to sparse compilers.
After analysing sparse-dense hybrid algebra’s mathematical expression, we find
out that reduction is its key operation [16–18]. There are several possible
ways to do reduction on GPUs. Different reduction methods are preferred for
different workloads. Choosing the correct reduction method can accelerate ker-
nels [19, 20]. For example, controlled experiments in [19] show that parallel
reduction can outperform conditional reduction and vice versa by 2× ∼ 4×.
However, current sparse compilers lack the abstraction for such flexible reduc-
tion semantics. That is because they assume the code executes serially. GPU
reduction is different from the serial reduction in that it changes the reduction
code’s structure (e.g., control-flow and loop basic block). Therefore, it cannot
be naively generated by directly adding or replacing some instructions like the
unroll in CPU. Solving this problem requires elevating reduction semantics to
the sparse compilation theory in a systematic way.
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(a) Example reduction (b) Synchronization granularity (c) Reduction strategy

Segment reduction

Parallel reduction

Fig. 1 Sparse compilers suffer from static synchronization granularity and static reduction
strategy. (a) Example reduction with legends in latter subfigures. (b) Parallelism waste
caused by improper synchronization granularity. (c) One type of segment reduction and
one type of parallel reduction. Segment reduction has two writeback threads and parallel
reduction has one.

However, elevating the flexible reduction semantics to sparse compilation
theory faces two main challenges: (1) Static synchronization granularity
wastes parallelism: GPU synchronizes a group of threads whose group size
is power of 2, which we term as synchronization granularity. Threads can pass
local register values to another thread in the same group. However, static syn-
chronization granularity may waste parallelism when inputs are dynamic. For
example, if not all threads’ register values are gathered, threads that do not
influence the reduction result still have to wait to be synchronized. In other
words, the synchronization granularity is too large for such input data, as
is shown in Fig. 1 (b). However, current sparse compilers only assume syn-
chronization granularity to be 32, which wastes the parallelism. This is the
limitation of current sparse compilers. (2) Static reduction strategy limits
optimization space exploration: GPU has provided very flexible meth-
ods to do reduction. Multiple threads in a thread group will write back to
the final results. We name such thread writeback thread. There could be more
than one writeback thread in a thread group. The thread indices of writeback
threads can also be decided at runtime and are controlled by the reduction
strategy. Different algorithms favor different reduction strategies. For exam-
ple, as is shown in Fig. 1 (c), if we assign a given number of non-zeros to each
thread group, it has to use segment reduction. That is because threads need to
write back according to the coordinate and thus writeback thread is decided
at runtime. However, in another algorithm where all threads in a group are
guaranteed to write back to the same place, it can use parallel reduction [20].
However, current sparse compilers assume that only the first thread in a thread
group is the writeback thread and use parallel reduction.

To tackle these challenges and build a more efficient sparse compiler, we
propose atomic parallelism and segment group in this paper and imple-
ment our techniques in a real sparse compiler TACO [11, 21–23]. Atomic
parallelism models the optimization space of sparse-dense hybrid algebra from
the reduction view. It uses the minimal data and reduction parallelism to dis-
tinguish different algorithms of a given algebra. Minimal data are used to define
reduction strategy and reduction parallelism for synchronization granularity.
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We use this model to propose new optimization techniques. Segment group
is a new abstraction for sparse compilation theory. It captures the dynamic
synchronization granularity and dynamic reduction strategy. To be specific,
we use flexible group size to solve challenge (1) and design full-stack support
for user-defined reduction strategy, which solves challenge (2). As is shown in
Fig. 2, segment group extends the expression ability of original sparse compi-
lation theory. Finally, we use sparse matrix-matrix multiplication (SpMM) as

Segment group

(This work)

Static 32-
thread parallel 

reduction

Original 

sparse


compilation

 theory

Fig. 2 Venn diagram for the relation between atomic parallelism and original sparse compi-
lation theory. The element is the point in the algorithm design space of a sparse-dense hybrid
algebra. Original sparse compilation theory can only express parallel reduction with group
size 32. However, it can also express some optimization points, for example, loop reorder,
beyond atomic parallelism. The union of segment group and original theory creates a new
sparse compilation theory.

an example to demonstrate atomic parallelism and segment group. SpMM is
one of the most widely used sparse-dense hybrid algebra. It is the core oper-
ator of many emerging applications [24–27]. It is also the simplest form of
sparse-dense hybrid algebra.

Therefore, this work manages to push the frontier a step forward on these
two challenges by a combined method involving segment group and atomic
parallelism which we called Sgap in this paper. Our contributions are as
follows:

1. We propose a framework atomic parallelism to analyse sparse-dense
hybrid algebra and propose new SpMM designs beyond previous works [17,
19, 28–30].

2. Based on the atomic parallelism, we point out that current sparse compilers
miss important optimization opportunities. We propose a new abstraction
segment group for sparse compilers. Segment group can reduce parallelism
waste and improve workload balance.

3. We implement segment group in TACO and get up to 1.2× speedup on
average over the original TACO’s SpMM kernels. Next, we generalize our
findings from TACO to dgSPARSE [19], an open-source state-of-the-art
SpMM library. We achieve 1.6× ∼ 2.3× speedup over dgSPARSE on the
algorithm we tune.

The rest of this paper is organized as follows. Background information is pro-
vided in Section 2. Section 3 introduces atomic parallelism and Section 4 is
for segment group. Then the implementation of segment group in TACO is
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detailed in Section 5. After that, we illustrate the combination of atomic paral-
lelism and segment group in TACO. Our evaluation of new SpMM algorithms
in TACO and generalization to dgSPARSE is presented in Section 7. The paper
is concluded in Section 8.

2 Background

2.1 Sparse-dense Hybrid Algebra

Sparse-dense hybrid algebra can be defined in two equivalent forms: the ten-
sor formulation (TF) in Eq. 1 and the database formulation (DF) in Eq. 3.
From TF sparse-dense hybrid algebra because the operands of it are sparse and
dense, for example, MTTKRP (Matricized Tensor Times Khatri Rao Prod-
uct) [16], SDDMM (Sampled Dense-Dense Matrix Multiplication) [31], SpMM
(sparse Matrix-Matrix Multiplication) [17], TTM (Tensor Times Matrix Prod-
uct) [18]. We use Einstein’s summation to define sparse-dense hybrid algebra
in AF as Eq. 1.

Yy1,y2,··· ,yM
= Aa1,a2,··· ,aN

D∏
i=1

Xj

xj
1,x

j
2,·,x

j

Mj

(1)

Y is the output tensor, Xj are dense input tensors, and A is the sparse
input tensor. At least one level aN in A does not store in dense format.
y1, y2, · · · , yM ,a1, a2, · · · , aN ,xj

1, x
j
2, · · · , x

j
Mj are in the same index variable

set. M is the mode of output tensor, and N is the mode of sparse input tensor.
D is the number of dense input tensors, and M j is the mode of dense input
tensor Xj . Specifically, MTTKRP, TTM, SDDMM, and SpMM are expressed
as:

Yi,j = Ai,k,lX1
k,jX2

l,j (2a)

Yi,j,l = Ai,j,kX1
k,l (2b)

Yi,k = Ai,kX1
i,jX2

j,k (2c)

Yi,k = Ai,jX1
j,k (2d)

We use message-passing to define sparse-dense hybrid algebra in DF as
Eq. 3.

Q(dst) = ⊕src∈Q0(dst){src,⊗(Q1(src, dst), Q2(dst))} (3)

Q,Q0, Q1, Q2 are queries for the relevant database. We follow the idea of
logical-physical storage seperation [32]. The value of Q(k) is defined as
Q(dst) = D(f(dst)). D is the relevant database of Q, storing (id, value) in
ascending order of id, where id ∈ Z and value ∈ Rn. dst is any hashable key
and f is a function K → Z. ⊕ can be any commutative operation and ⊗ can
be any function that takes two objects as input and output one object that
can be operated by ⊕. The result of ⊕ is written to f(dst) in Q. Sparse-dense
hybrid algebra is sparse because Q0(dst) for all dst are diverse. In other words,
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Fig. 3 Examples of sparse-dense hybrid algebra. The consecutive grey parallelograms or
squares represent the reduction modes.

Q0(i)
⋂

Q0(i + 1) ∼ Ø. Such algebra is dense because values in D,D1, D2 are
scalar, dense vectors, or dense matrices.

The core operation of sparse-dense hybrid algebra is reduction and reduc-
tion in different kernels behaves similarly. This key observation motivates
atomic parallelism because we only need to optimize the common reduction
operations and use the compiler to optimize different sparse-dense hybrid alge-
bra kernels automatically. For example, in TF kernels do reduction on l, k
dimensions in MTTKRP, k in TTM, j in SDDMM and SpMM. The reduction
can be along one sparse and one dense dimension, as in MTTKRP, TTM, and
SpMM. It can also be along two dense dimensions, as in SDDMM. Fig. 3 illus-
trates these examples and highlights the reduction dimensions. We also give
concrete code examples in Fig. 4. It shows that some of these kernels share
common reduction codes. For example, MTTKRP contains two reductions,
each behaving the same as the reduction in SpMM. Such property can also
be illustrated in DF. As shown in Fig. 5, for the first reduction, the value of
D1 both are scalar; the value of D2 both are vectors. For the second reduc-
tion of MTTKRP, though the value of D1 is a vector, which is different from
SpMM’s first reduction, ⊕ behaves the same because ⊗ here is element-wise
vector product.

2.2 SpMM Optimization

As explained above, the reduction is the core operation of sparse-dense ten-
sor algebra and some kernels share the same type of reduction. Without loss
of generality, we take SpMM as an example to optimize the reduction in
this paper. The optimization techniques can be easily generalized to expedite
other sparse-dense hybrid algebra kernels. Yang et al. [28] selects between two
algorithms to achieve respectively even distribution of nnz among parallel pro-
cessors and row-splitting among threads. Adaptive Sparse Tiling (ASpT) [29]
aims at improving data locality and thus reduces the total number of accesses
to global memory. Ge-SpMM [17] proposes Coalesced Row Caching (CRC)
method to enable coalesced memory access to both sparse and dense matrices
and Coarse-grained Warp Merging (CWM) method for SpMM merging work-
loads from different warps to reuses loaded sparse matrix. Mehrabi et al. [30]
proposes several row permutation strategies for CSR format to enhance load
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Fig. 4 Code examples of reduction in sparse-dense hybrid algebra in TF. The colored
lines are reduction codes. MTTKRP has two levels of reduction, colored green and yellow,
respectively. The overlapped region means that the first-level reduction’s output serves as
the second-level reduction’s input. We follow the naming rules in [12] for the storage of A.

balance and data locality. DA-SpMM [19] is a data-aware kernel selector among
8 algorithms according to 3 dimensions in the space dealing with dynamic
input data.

2.3 Sparse Compilers

The complexity of optimizing sparse tensor algebra comes from four direc-
tions: data, data format, algebra, and hardware. Researchers often develop a
technique for one data format, one algebra, and one hardware. Such a library
method heavily relies on experts and engineering work [33–35]. However, sparse
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Fig. 5 Illustration of common reduction in MTTKRP and SpMM. The equivalent
expressions of the same kernel in TF and DF are below each sub-figure.

compilers can extremely reduce such engineering burden and boost innova-
tion in this area. Unlike the library method, sparse compilers aim to use one
monolithic theory to express all data formats, all algebras, and provide flexi-
ble user interface, which enables users to explore the optimization space given
data and hardware. Research on sparse compilers can be divided into two cate-
gories: (1) Pass-oriented. Given the imperative code, design compilation passes
to optimize the code [8–10]. (2) Language-oriented. View sparse compiler as a
programming language and design lowering and scheduling process [12, 14, 15].
Especially, TACO is a fundamental breakthrough on this problem. To the best
of our knowledge, it is the first to propose a practical sparse compilation the-
ory. MLIR sparse dialect [14] implements TACO’s sparse compilation theory as
MLIR dialect. SparseTIR [15] follows the design philosophy of TensorIR [36],
but it still uses some of the TACO’s concepts such as position and coordi-
nate space. TACO also motivates innovations on accelerators for sparse tensor
algebra [37].

2.4 TACO

TACO (The Tensor Algebra Compiler) is a fast and versatile compiler-based
library for sparse linear and tensor algebra [11, 12, 21, 23]. TACO has three
types of inputs: a tensor algebra expression (in an Einstein summation notation
or reduction notation); level formats of input and output tensor; schedule
commands. We will introduce TACO in the front-end, middle-end, and back-
end order. The workflow of TACO is illustrated in Fig. 6.

2.4.1 Front-end

At the front-end, the tensor algebra expression is concretized to concrete index
notation [21]. The concrete index notation (CIN) is a language that describes
the execution of a tensor algebra. Unlike bare tensor algebra expression, CIN
describes the loop, index variables relations, workspace, hardware platform,
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Tensor Algebra Expression

Tensor Level Formats

Scheduling Commands

Concrete Index 
Notation Low Level IR Imperative Code

Front-end Middle-end Back-end

Fig. 6 Overview of the TACO workflow

etc. Schedule commands transform the CIN. For example, a precompute sched-
ule will add a where statement to the CIN. Though TACO provides a clean
and powerful scheduling API to transform CIN, the user can still change the
CIN directly. TACO provides a match function that can take lambda expres-
sion as input. The function can modify CIN when it meets a specific type of
CIN node or a pattern of CIN nodes. Moreover, users can define a child class
of IndexNotationRewriter that can directly rewrite the CIN. Such technique
is used to implement segment group.

2.4.2 Middle-end

At the middle-end, CIN will be transformed to imperative IR (or low level
IR (LLIR)). LLIR describes the basic blocks, for example, for-loop, while-
loop, and if-statement. LLIR is almost the executable code. The output of the
middle-end is a chain of LLIR. The sparse iteration theory [12] guides the CIN
to LLIR process. It ensures that different tensors only coiterate over elements
that can generate non-zero output. Specifically, TACO designs lower functions
for every statement of CIN and lattices in the sparse iteration space. However,
current lower functions only assume serial reduction is done on the compressed
level of sparse tensors. We will break the serial code assumption to implement
segment group. Moreover, we suggest that more flexible or even user-defined
lowerers should be designed in the future.

2.4.3 Back-end

At the back-end, LLIR will be transformed to code for different backends. In
this paper, we target the CUDA code generation. TACO CUDA code generator
has some assumptions that previous papers did not thoroughly explore. TACO
deals with CUDA code generation in a nested loop favor [23]. Moreover, it only
generates one dimension of block and thread. That is, it only has blockIdx.x
and threadId.x. When the index variable of a for-loop LLIR is bound on the
GPUBlock, it will use blockIdx.x to index this index variable. In the CPU
case, it will emit a real for-loop. Such variable is assumed to increment by 1.
Index variables bound on GPUWarp and GPUThread are assumed to be the
outer and inner variables of threadIdx.x. The tile size depends on the index
variable on GPUThread. The mixture of tiling and synchronization semantics
of GPUWarp loses some optimization opportunities. We will discuss this later
and improve it in our implementation.
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3 Atomic parallelism

3.1 Computation unit model

We observe that the core operation of sparse-dense hybrid algebra is the reduc-
tion. Therefore, the core of our model is how many data are reduced and are
synchronized in which way. We model the atomic computation unit as thread.
A thread executes a serial program. All threads execute the same program
independently with each own’s input data and are distinguished by threa-
dId. Threads can do synchronization in groups with reduction parallelism of
2,4,8,16, or 32. We model GPU computation as unlimited parallel threads
and define the number of threads as resource parallelism that GPU can pro-
vide. We do not consider the shared memory, grid level, and the mapping of
the thread block or the streaming processor. Instead, we view them as rea-
sonable implementation details after the basic parallel pattern is decided. In
other words, there can be many kinds of implementation for each algorithm in
atomic parallelism. In this sense, atomic parallelism can encourage more GPU
optimization innovation.

3.2 Overview of atomic parallelism

To define the parallel pattern concretely, we propose atomic parallelism. A
program with atomic parallelism cannot be paralleled anymore. In other words,
a thread at least executes the amount of data denoted by atomic parallelism.
Formally, atomic parallelism is defined as the Cartesian product of minimal
data. Minimal data is the minor data of one category a thread can execute.
Atomic parallelism can be used to construct the optimization space of any
sparse-dense hybrid algebra under the GPU model, but we focus on SpMM in
this paper.

Indeed, tiling, manipulating shared memory, and thread mapping [17, 30,
38, 39] are also important for SpMM on GPU. They are crucial for SpMM,
especially with many dense columns(usually more than 128 columns), because
the computation will be more workload intensive and bounded by the mem-
ory access for dense columns. However, we focus on SpMM with fewer dense
columns(usually less than 8 columns), which are more balance intensive and
bounded by the maximum warp execution cycles.

SpMM has two orthogonal atomic parallelisms: minimal data can be (1)
{ 1
g , 1, g} non-zeros of the sparse matrix and { 1

c , 1, c} columns of the dense

matrix; (2) { 1
g , 1, g} rows of the sparse matrix and { 1

c , 1, c} columns of the

dense matrix. c ∈ Z+ and g ∈ Z+ are tunable parameters. Though they can be
1, they have different meanings from 1, because they are tunable. Therefore,
the atomic parallelism space of SpMM is described in < xnnz, y col > or <
xrow, y col >. Resource parallelism only multiplies one element of the atomic
parallelism. For example, given resource parallelism r, the amount of executed
data equals < r × xnnz, y col > or < xnnz, r × y col >. Besides, a fractional
amount of data means multiple threads may execute on the same datum.
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For example, < 1
g row, 1 col > means that g threads execute the same row

collaboratively.

3.3 SpMM optimization space formalization

We use atomic parallelism and reduction parallelism {< ... >, r} to define
an SpMM kernel. < ... >∈ { 1

g , 1, g}nnz × {
1
c , 1, c}col or { 1

g , 1, g}row ×
{ 1
c , 1, c}col. They describe the minimal data. And the reduction parallelism

r ∈ {2, 4, 8, 16, 32} assigns how many threads are synchronized each time.
Fig. 7 illustrates the SpMM optimization space. However, not all points in the
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Fig. 7 SpMM optimization space. The grey area is illegal. The dashed line part of the axis
represents hardware dependent end of the axis.

atomic parallelism space are legal in optimization space. Fig. 8 illustrates the
details of space pruning. There are three rules for legal points:

1. {< 1
g nnz, x col >, r}, {< xnnz, 1

c col >, r} are illegal because one non-zero
must by multiplied by at least one element in the dense matrix.

2. {< 1
g row, x col >, r}( r

g < 1) is illegal because parallel reduction only has
one writeback thread.

3. {< 1
g row,

1
c col >, r} is illegal because it conflicts with the rule that

resource parallelism only multiplies one element of the atomic parallelism.

The state-of-the-art algorithm space, DA-SpMM [19] is in the atomic par-
allelism design space. It proposes a three-dimensional SpMM algorithm design
space. We claim that the design space of DA-SpMM is included in the atomic
parallelism space. To be specific, EB+PR is {< 1nnz, c col >, 32}, RB+PR
is {< 1

32 row, c col >, 32}, EB+SR is {< 32nnz, c col >, 1}, and RB+SR is
{< 1 row, c col >, 1}. c means coarsen factor, g means group size. Though real
CUDA code with 1 row or 1nnz may have minimal data greater than one
because of limited resource parallelism, we still label the algorithm as 1 row
or 1nnz. The RM/CM is the implementation detail and is included in atomic
parallelism in theory.
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Fig. 8 Projections of SpMM optimization space. Grey areas are illegal and hollow circles
are legal points. Sub-figures (a), (b), and (c) correspond to Rule 1, 2, and 3 respectively.

4 Segment group

4.1 Current warp-level abstraction

Current sparse tensor compilers with CUDA backend take warp as the rank of
a thread (tiling), a particular parallel unit (synchronization) or just a hardware
instruction. For example, TACO assumes warp and thread to be the outer and
inner loop, and the warpSize depends on the split factor. It should be noted
that no synchronization behavior is assumed in this case. TACO also takes the
32-thread warp reduction as atomic addition at the GPUWarp parallel unit
and assumes users will split the last level loop with warpSize = 32. In this
case, CUDA warp is taken as a for-loop with extent warpSize and incremental
step 1. Then they will emit CUDA warp primitives such as shfl down sync
to do the reduction. Fig. 9 illustrates TACO’s current GPU Warp semantics.
On the contrary, TVM[40] only binds on thread and block level and does not
assign any synchronization on the warp level. Instead, it takes 32 as a hardware
feature and uses such intrinsic to fill in schedule parameters in auto-scheduler.
Besides, it also uses warp as a memory load unit in TIR[40].

scalarPromote(stmt.reorder({i, k, j}).fuse(i, k, io)
.split(io, ko, ki, 8).reorder({ko, ki, j})
.pos(j, jpos, A(i, j)).reorder({ko, ki, jpos})
.split(jpos, jpos0, jpos1, 32)
.reorder({ko, ki, jpos1, jpos0})
.parallelize(ko, GPUBlock, IgnoreRaces)
.parallelize(ki, GPUWarp, Atomics)
.parallelize(jpos1, GPUThread, ParallelReduction)))

C: {Dense,Dense,{0,1}}

B: {Dense,Dense,{0,1}}

A: {Dense,Compressed,{0,1}}

stmt: C(i,k) = A(i,k) * B(j,k)

int32_t ko = blockIdx.x; 
int32_t jpos1 = threadIdx.x % 32; 
int32_t ki = threadIdx.x / 32;

atomicAddWarp<float>(C_vals, kC, tjpos1C_val);
…

…

…

Format and Expression Scheduling language Imperative code

Tiling 

semantics

Synchronization 

semantics

Fig. 9 Tiling and synchronization semantics of GPU Warp in TACO

4.2 Overview of segment group

However, at least two existing assumptions should be improved for sparse
compilers. First, the tiling and synchronization semantics of warp should be
explicitly separated. As shown in atomic parallelism, the atomic and reduction
parallelism can be different, and reduction parallelism is not necessarily 32.
Second, synchronization semantics should be able to express various reduction
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strategies and flexible reduction granularity, instead of just parallel reduc-
tion for 32 threads. As shown in atomic parallelism, {< 1nnz, c col >, n}
requires synchronization of n threads with row number of their own. There-
fore, the warp reduction should be able to reduce to different outputs instead
of only one. Such change not only calls for changing the hand-coded warp level
reduction functions but also for elevating the reduction pattern to higher-level
compiler passes. Such semantics lifting calls for a new organization of basic
blocks, new control flow, and new user-level APIs.

4.3 Relationship between segment group and atomic
parallelism

Atomic parallelism models the optimization space of sparse-dense hybrid alge-
bra from the reduction view. We use this model to propose new optimization
techniques. As shown in Section 2, reduction is the key operation of sparse-
dense hybrid algebra, which contains many different tensor algebras such as
SpMM, SDDMM, MTTKRP, and TTM. Based on this observation, we define
and explain segment group in Section 3, using SpMM as an example. We
show that 3 opens new optimization space for SpMM. Such benefit can be
generalized to other sparse-dense hybrid algebra. However, it requires repeti-
tive engineering efforts to optimize case by case. In response to this issue, we
propose segment group, a new abstraction for sparse compilers to ship perfor-
mance benefits brought by atomic parallelism to users with only several lines
of code changed on the user side.

In summary, we propose that sparse compilers for GPU should have
abstraction segment group, that is, a warp that takes the tiling semantics,
and a group that does different types of reduction synchronization. We will
use TACO1 to illustrate how to implement segment group, but other sparse
compilers can also integrate segment group. Fig. 10 illustrates the workflow.

Fig. 10 Overview of segment group in the TACO workflow

5 Segment group for TACO

The original parallelize transformation is defined as parallelize(IndexVar i,
ParallelUnit pu, OutputRaceStrategy rs) [23]. The transformation does parallel

1We build on commit d0654a8 https://github.com/zhang677/taco/tree/
d0654a84137169883973c40a951dfdb89883fd9c

https://github.com/zhang677/taco/tree/d0654a84137169883973c40a951dfdb89883fd9c
https://github.com/zhang677/taco/tree/d0654a84137169883973c40a951dfdb89883fd9c
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execution on IndexVar i, using ParallelUnit pu. And OutputRaceStrategy rs
describes the data races during reductions. For GPU, pu can be GPUThread,
GPUWarp, and GPUBlock. rs can be NoRaces, IgnoreRaces, and Atomics.
We propose two new designs to TACO:

1. We add a new PrallelUnit, GPUGroup, to the parallelize transformation,
and change the semantics of ParallelUnit GPUWarp.

2. We break the assumption that other transformations other than parallelize
assumes serial code and design a new lower process to enable segment
reduction.

5.1 New parallelize transformation

We assign the tiling semantics to GPUWarp and its Atomic OutputRaceStrat-
egy will only serve to direct the lowering function instead of synchronization
semantics. Because GPUWarp now only serves as the outer loop of tiling on
threadIdx, it does not have Atomic semantics. Meanwhile, we add GPUGroup
which has ReductionStrategy and GroupSize attributes instead of Outpu-
tRaceStrategy. ReductionStrategy describes the group’s reduction type, and
GroupSize assigns the reduction parallelism.

5.2 Reduction semantics elevation

TACO assumes that a sparse algebra compiler should do it best to ensure that
only elements that can generate non-zero output will be calculated [12]. How-
ever, we point out that this assumption is not necessarily valid. The previous
assumption is the best option for performance because the sparse iteration
space theory is built on the assumption that the code runs serially. For CUDA
code, however, such assumption is broken, which we term as zero extension.
Zero extension means that some “out-of-bound” reduction can be allowed in
the sparse iteration theory because it can later be executed by some warp
primitives faster than for-loop.
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5.3 Segment reduction lowering

//Orig ina l CUDA code
for ( k=0;k<B2 dimension ; k++){

pA2 begin=i b l o c k S t a r t s [ b lock ] ;
pA2 end=i b l o c k S t a r t s [ b lock +1] ;
fposA=block ∗256 ;
i p o s=taco b inarySearchBe fo re (
A2 pos , pA2 begin , pA2 end , fposA ) ;
i=i p o s ;
fposA=block ∗256+ fpos1 ;
i f ( fposA>=A2 pos [ A1 dimension ] )

break ;
f=A2 crd [ fposA ] ;
kB=f ∗B2 dimension+k ;
while ( fposA==A2 pos [ i p o s +1]){

i p o s=i p o s +1;
i=i p o s ;

}
kC=i ∗C2 dimension+k ;
f loat va l =0.0;
va l=A vals [ fposA ]∗ B vals [ kB ] ;
atomicAdd(&C vals [ kC ] , va l ) ;

}

Listing 1 Original CUDA code

//Modified CUDA code
for ( k=0;k<B2 dimension ; k++){

pA2 begin=i b l o c k S t a r t s [ b lock ] ;
pA2 end=i b l o c k S t a r t s [ b lock +1] ;
fposA=block ∗256+ fpos1 ;
i p o s=taco b inarySearchBe fo re (
A2 pos , pA2 begin , pA2 end , fposA ) ;
i=i p o s ;
f loat va l =0.0;
i f ( fposA>=A2 pos [ A1 dimension ] )

va l =0;
else {

f=A2 crd [ fposA ] ;
kB=f ∗B2 dimension+k ;
while ( fposA==A2 pos [ i p o s +1]){

i p o s=i p o s +1;
i=i p o s ;

}
va l=A vals [ fposA ]∗ B vals [ kB ] ;

}
kC=i ∗C2 dimension+k ;
segReduceWarp<f loat ,32>( C vals ,
kC , va l ) ;

}

Listing 2 Modified CUDA code

Listing 1 and Listing 2 show the difference between codes generated by the
original TACO and the modified TACO. They use the same schedule, except
that code on the right uses segment reduction of GPUGroup with size 32.

scalar workspace. TACO assumes that the statement and the assignment
of scalar workspace [21] are in the same basic block. However, this assumption
is so strong that it restricts the expressive power of TACO. For example, in
{< 1nnz, c col >, 32} the scalar workspace should be assigned in a basic block
belonging to an else but stated in the same context with reduction of scalar
workspace, outside the assignment basic block.

Macro instruction. It is important to emit code in a modular way. There-
fore, we design two new macro instructions atomicAddGroup<T,G>(T* array,
int idx, T value) and segReducWarp<T,G>(T* array, int idx, T value). They
are template device functions that takes in the output array, the index of the
output and the value reduced to the output2. They will do some kind of reduc-
tion on G threads, and G equals GroupSize. They will be stated in the header
file and used as macro instructions in the final CUDA code. In fact, we borrow
the group concept from the cooperative group in CUDA. Since CUDA 11.0, it
has supported an easy-to-use API called cooperative group 3 that makes it only
one-line-code effort to change reduction granularity to less than 32 threads.

2We do not actually integrate these macro instructions into TACO, because it is fairly straight-
forward and purely engineering. When testing the kernels, we just replace the atomicAdd with
the new macro instructions. We open-source the modified TACO https://github.com/zhang677/
taco/tree/parallelreduction.

3https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups

https://github.com/zhang677/taco/tree/parallelreduction
https://github.com/zhang677/taco/tree/parallelreduction
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups
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6 TACO’s support for four SpMM algorithms

This section will illustrate the atomic parallelism design space and our
implementation of segment group. We first reexamine two SpMM algorithms
proposed by TACO [23]. They use TACO to generate {< g nnz, c col >, 1} and
{< xrow, c col >, 1}. We then use another two examples, {< 1

g row, c col >, r}
and {< 1nnz, c col >, r} to illustrate how the CIN is changed. The tensor
algebra expression is C(i, k) = A(i, j) ∗ B(j, k). A’s first level is dense and
the second level is compressed. B and C are both dense matrices. A,B, and
C all are row-major. We assume N = 4 and that thread per block (resource
parallelism p) equals 256. We explicitly fill p, g,N, c into the CIN to show
their arithmetic relations with CIN parameters. The actual CIN will not have
undetermined variables.

6.1 TACO SpMM reexamination

Currently, TACO supports two algorithms in atomic parallelism. They don’t
need synchronization semantics and only tune on the tiling semantics. The
implementation by TACO is shown in Listing 3 and 4. They force the
synchronization granularity to be 1 which presents limited capability in
reduction.

Concrete Index Notation for {< g nnz, c col >, 1} is :

suchthat ( f o r a l l ( block , f o r a l l ( warp , f o r a l l ( thread ,
f o r a l l ( dense va l , where (C( i , k)+=tnnzC , f o r a l l ( nnz ,
tnnzC+=A( i , j )∗B( j , k ) ) ) ) , GPUThread , Atomics ) ,
GPUWarp, NoRaces ) , GPUBlock , NoRaces ) ,
f u s e ( i , j , f ) and pos ( f , fpos ,A( i , j ) ) and
s p l i t ( fpos , block , fpos1 , ( p∗g /(N/c ) ) ) and
s p l i t ( fpos1 , warp , nnz , g ) and s p l i t (k , ko , thread , c )
and bound ( ko , dense va l ,N/c , MaxExact ) )

Listing 3 CIN for {< g nnz, c col >, 1}

Actually, TACO’s precompute schedule fails to generate this CIN, so
we use the IndexNotationRewriter technique mentioned in section 2.4.1
to get the CIN above. In the evaluation section of [23] it assumes
N = 128, g = 16, c = 4, p = 512, which is a point in the {< g nnz, c col >, 1}.

Concrete Index Notation for {< g row, c col >, 1} is :

suchthat ( f o r a l l ( block , f o r a l l ( warp , f o r a l l ( row ,
f o r a l l ( thread , f o r a l l ( co l , where (C( i , k)+=tjC ,
f o r a l l ( j , tjC+=A( i , j )∗B( j , k ) ) ) ) , GPUThread , NoRaces ) ) ,
GPUWarp, NoRaces ) , GPUBlock , NoRaces ) , s p l i t ( i , block , io ,
p∗g /(N/c ) )and s p l i t ( io , warp , row , g ) and s p l i t (k , ko , co l , c )
and bound ( ko , thread ,N/c , MaxExact ) )

Listing 4 CIN for {< g row, c col >, 1}

The generated code can be directly executed. In the evaluation section of [23]
it assumes N = 128, g = 1, c = 4, p = 512, which is also a point in the
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{< g nnz, c col >, 1}. These two algorithms only use the tiling semantics of
GPUWarp.

6.2 Two new algorithms

We introduce two algorithms to overcome the restricted scheme forced by
TACO to improve workload balance. The algorithms provide functionality
to change group size and reduction strategy through tuning nnz and rows.
Listing 5 and 6 show the implementation.

Concrete Index Notation for {< 1
g row, c col >, r} is :

suchthat ( f o r a l l ( ko , f o r a l l ( warp , f o r a l l ( k i i , where (C( i , k)+=tjpos1C ,
f o r a l l ( jpos1 , f o r a l l ( jpos0 , tjpos1C+=A( i , j )∗B( j , k ) ) , GPUThread ,
Para l l e lReduc t i on ) ) ) ,GPUWarp, Atomics ) , GPUBlock , NoRaces ) ,
f u s e ( i , k , i o ) and s p l i t ( io , ko , ki , c∗p/g ) and s p l i t ( ki , warp , k i i , c )
and pos ( j , jpos ,A( i , j ) ) and s p l i t ( jpos , jpos0 , jpos1 , g ) and
p a r a l l e l i z e ( jpos1 ,GPUGroup, r , Atomics ) )

Listing 5 CIN for {< 1
g
row, c col >, r}

We find that TACO can support g = 32, r = 32, but it is not explored
in the autoscheduling paper4. GPUGroup is bound on the indexVar that
does the reduction. Generated macro-instruction, atomicAddWarp<Type>, is
changed to atomicAddGroup<Type, G> to enable more fine-grained thread
synchronization.

Concrete Index Notation for {< 1nnz, c col >, r} is :

suchthat ( f o r a l l ( block , f o r a l l ( warp , f o r a l l ( ki , f o r a l l ( fpos1 , where (
C( i , k)+=tmp , tmp=A( i , j )∗B( j , k ) ) , GPUThread , Atomics ) ) ,GPUWarp, NoRaces ) ,
GPUBlock , IgnoreRaces ) , f u s e ( i , j , f ) and pos ( f , fpos ,A( i , j ) ) and
s p l i t ( fpos , block , fpos1 , p/(N/c ) ) and s p l i t (k , ko , ki , c ) and bound ( ko ,
warp ,N/c , MaxExact ) and p a r a l l e l i z e ( jpos1 ,GPUGroup, r , Segment ) )

Listing 6 CIN for {< 1nnz, c col >, r}

This algorithm has no counterpart in the original TACO. We change the
originally emitted atomicAdd to segReduceGroup<Type,G>, and the grouped
segment reduction is done in the macro instruction. The lowerer of scalar
workspace is changed to emit the code ready for segmented reduction.

7 Evaluation

Experiment settings. We evaluate the implementation and the generaliza-
tion on three architectures:

• NVIDIA RTX 3090. Compute Capability 8.6 (68 Ampere SMs at 1.395 GHz,
24 GB GDDR6x, 936 GB/s bandwidth).

4[23]’s authors shared their code with us. We also use a similar code base to test our kernels in
Section 7

https://drive.google.com/file/d/1qZbP7tY5N35N54JlmYkBHxY97HbgFSHE/view?usp=sharing
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• NVIDIA RTX 2080. Compute Capability 7.5 (46 Turing SMs at 1.515 GHz,
8 GB GDDR6, 448 GB/s bandwidth).

• NVIDIA Tesla V100. Compute Capability 7.0 (80 Volta SMs at 1.370 GHz,
16 GB HBM2, 900 GB/s bandwidth).

We use NVCC 11.6 and CUDA 11.6 with the same compilation flags as
[23] when testing TACO and the same compilation flag as [19] when testing
the generalized tuning. We carry 25 tests for each kernel to get the average
execution time when evaluating TACO’s generated CUDA kernels. We use
nsight-compute5 to get the execution time of tuned dgSPARSE kernels. We
use the same sparse matrices as [19]. We evaluate on three different architec-
tures to show that our techniques are not limited to specific traits on certain
generations of GPU, but are valid on common SIMT architectures.

7.1 Performance of two new algorithms for TACO

This experiment aims to prove that segment group can improve the sparse
compiler’s expression ability and boost the performance of SpMM kernels
generated by TACO. The dense input matrices have N = 46.

Against the static group size 32. We use {< 1
g row, c col >, r} to show

the improvement brought by flexible group size r. Current TACO only supports
g = 32, r = 32, so we keep the same g with TACO and change r. In Table 1 we
show that r = 8 and r = 4 can bring over 2.0x speedup on average. We also
measure the normalized speedup. Normalized speedup of A over B means that
if A performs better than B, we count the speedup; otherwise, we assume the
user can choose the better algorithm, and the speedup is counted as 1.

Table 1 Flexible group size speedup

Hardware r = 8 r = 8 norm r = 4 r = 4 norm

RTX 2080 2.451 2.478 2.456 2.483
RTX 3090 2.236 2.284 2.259 2.307
Tesla V100 2.086 2.143 2.094 2.150

Against the original reduction. We use {< 1nnz, c col >, r} to illus-
trate the speedup brought by flexible reduction. Because they have different
data types (nnz vs. row), we control c and r, and compare the execution of
{< 1nnz, c col >, r} with the best g configuration of {< 1

g row, c col >, r} each
dataset. We only do this experiment on RTX 3090 and record the normalized
speedup here. In Table 2 we show that segment reduction can bring up to
1.3x speedup over atomicWarp reduction. Limited by the number of threads
per warp in GPU, r can only be 1, 2, 4, 8, 16, 32. Therefore, users can try these
values to tune r in practice.

5https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
6We open source the testing code at https://github.com/zhang677/segTACO.

https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://github.com/zhang677/segTACO
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Table 2 Segment reduction normalized speedup

c r=4 r=8 r=16 r=32

1 1.008 1.025 1.085 1.272
2 1.019 1.045 1.102 1.291
4 1.063 1.095 1.205 1.381

Against the original TACO SpMM algorithms. In this experiment,
we compare the performance between TACO’s original SpMM algorithms {<
g nnz, c col >, 1} and {< xrow, c col >, 1} [23] and two algorithms proposed by
us, {< 1

g row, c col >, r} and {< 1nnz, c col >, r}. We assign reasonable values
to g, c, x,and r, and tune these parameters. We record the best performance
of each algorithm on each dataset. From Table 3 we conclude that segment
group brings 1.1x∼1.2x normalized speedup. Fig. 11 shows the detailed data.

Table 3 Normalized performance of new algorithms

RTX 3090 RTX 2080 Tesla V100

Speedup 1.191 1.098 1.223

Fig. 11 Newly generated SpMM kernels performance compared with original TACO’s best
SpMM kernel for different number of dense matrix columns N . Density is defined as the
number of non-zeros divided by the multiplication of the number of rows and cols for sparse
matrix.

7.2 Generalization of atomic parallelism

In this experiment, we implement our atomic parallelism to dgSPARSE
library 7, an open-source state-of-the-art SpMM and SDDMM library. We

7https://github.com/dgSPARSE

https://github.com/dgSPARSE
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achieve up to 2.7x speedup on a certain SpMM algorithm. We keep the same
sparse input matrix format (CSR) with dgSPARSE. After profiling, we find
that row-major algorithms consistently outperform the col-major algorithms.
Therefore, we target row-major. We are left with 4 algorithms: EB+SR+RM,
EB+PR+RM, RB+SR+RM, RB+PR+RM. We will introduce the details of
tuning RB+PR+RM and show the speedup.

To tune an actual GPU SpMM kernel, we require more fine-grained param-
eters than those in atomic parallelism. Parallelism is now two-fold: block-level
and thread-level, instead of homogeneous threads. Besides, the memory hierar-
chy, such as the shared memory should be considered. Moreover, parallelism is
limited in the physical world. For example, the largest thread-level parallelism
is 1024 because a block has at most 1024 threads. The largest block-level par-
allelism is also finite(less than 232 − 1). GridSize can be arbitrary because the
extra blocks will be taken care of by GPU scheduler.

Tuning parameters for RB+PR+RM can be divided into two categories.
The first is how many workers are assigned to process one chunk of data. The
second is how many chunks of data are assigned to one worker. RB+PR+RM
has 7 tunable parameters. A block process tileSz real columns. workerSz
threads process one vectorized column and threadRw sparse rows. groupSz
threads are synchronized. blockSz denotes the number of threads per thread-
block. workerDimR denotes the block parallelism of sparse rows. A vectorized
column has coarsenSz consecutive real columns. If the overall sparse row par-
allelism is less than the number of rows in the sparse matrix, one thread
may process more than one row. The tiling is“Dense major”; dense columns
are fully parallelized. Specifically, blockDim.x = min(N, tileSz) / coarsenSz *
workerSz. Full source parallelism of one block is max(blockSz, blockDim.x *
2). In the dgSPARSE implementation, tileSz = workerSz = groupSz = 32,
workerDimR equals the number of rows of the sparse matrix , threadRw = 1,
blockSz = 256, and coarsenSz=(N%4==0)?4:(N%2==0)?2:1.

Based on the insights of this paper, we should separate tiling and
synchronization, add finer-grained parallelism, and more flexible work-
load of each thread. Therefore, we propose to tune four parameters: <
groupSz, blockSz, tileSz, workerDimR >. Actually, workerDimR can be arbi-
trary. However, we set it to be power of 2 or reciprocal power of 2 times of
the original value in order to explore the local area in the design space. As
in atomic parallelism we set groupSz as 2,4,8,16, or 32. tileSz is power of 2
larger than groupSz, and depends on N . blockSz is set 128,256, or 512 which
are common values for the number of threads per threadblock. We tune the
RB+PR+RM kernel for N = 4, 16, 64, 128. From Table 4 we conclude that
tuning can bring 1.6x∼2.3x speedup over the original implementation8.

Because DA-SpMM introduces a decision tree model to choose the best
configuration for a given sparse matrix, we further explore the maximum

8We open source our implementation at https://github.com/dgSPARSE/dgSPARSE-Library/
commit/9e3e4c18f40e76b97a805b8a9733258f7e9edeb6.

https://github.com/dgSPARSE/dgSPARSE-Library/commit/9e3e4c18f40e76b97a805b8a9733258f7e9edeb6
https://github.com/dgSPARSE/dgSPARSE-Library/commit/9e3e4c18f40e76b97a805b8a9733258f7e9edeb6
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Table 4 Speedup over original implementation

Hardware geomean1 max N

RTX 3090

2.295 4.316 128
2.181 4.432 64
1.997 4.271 16
2.046 7.819 4

RTX 2080

1.938 4.379 128
1.927 4.430 64
1.995 5.019 16
2.307 8.582 4

Tesla V100

1.874 3.724 128
1.824 3.846 64
1.693 3.388 16
1.852 6.114 4

1We use geometric mean to reduce outlier bias.

speedup that dynamic choices can bring. This experiment examines the neces-
sity of designing a new model to choose the best parameters. From Table 5 we
conclude that the most significant speedup of dynamic choices is 1.1x∼1.4x.

Table 5 Speedup over static implementation

Hardware geomean N Best static

RTX 3090

1.124 128 < 8, 256, 8, 1/2 >
1.114 64 < 4, 256, 8, 1/2 >
1.310 16 < 8, 256, 8, 1/2 >
1.406 4 < 8, 256, 8, 1 >

RTX 2080

1.095 128 < 4, 256, 8, 1/2 >
1.114 64 < 4, 256, 8, 1/2 >
1.276 16 < 4, 256, 8, 1/2 >
1.310 4 < 4, 256, 8, 1/2 >

Tesla V100

1.137 128 < 8, 256, 8, 1/2 >
1.177 64 < 8, 256, 8, 1/2 >
1.367 16 < 8, 256, 8, 1 >
1.326 4 < 8, 256, 8, 1 >

8 Conclusion

We propose atomic parallelism to analyze sparse-dense hybrid algebra and
propose new SpMM designs. Based on atomic parallelism propose a new
abstraction segment group to sparse compilers and remedy the missing opti-
mization opportunities. First, we implement the new abstraction in TACO
and achieve up to 1.2x speedup over TACO’s original SpMM kernels. Then,
we use atomic parallelism to tune an SpMM algorithm in dgSPARSE and
get 1.6x∼2.3x speedup on the tuned algorithm. In the future, atomic paral-
lelism can be exposed as an auto-tuning API for users to explore different
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synchronization granularity and reduction strategy for sparse-dense hybrid
algebra.
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