Streaming Tensor Program: A streaming abstraction
for dynamic parallelism

Gina Sohn Genghan Zhang Konstantin Hossfeld
Stanford University Stanford University Stanford University
Stanford, USA Stanford, USA Stanford, USA
ginasohn@stanford.edu zgh23@stanford.edu hossfeld@stanford.edu
Jungwoo Kim Nathan Sobotka Nathan Zhang

SambaNova Systems
Palo Alto, USA
stanfurd@stanford.edu

Stanford University
Stanford, USA
nsobotka@stanford.edu

Stanford University
Stanford, USA
jungwkim@stanford.edu

Olivia Hsu
Stanford University
Stanford, USA
Carnegie Mellon University
Pittsburgh, USA
owhsu@stanford.edu

Abstract

Dynamic behaviors are becoming prevalent in many tensor
applications. In machine learning, for example, the input ten-
sors are dynamically shaped or ragged, and data-dependent
control flow is widely used in many models. However, the
limited expressiveness of prior programming abstractions
for spatial dataflow accelerators forces the dynamic behav-
iors to be implemented statically or lacks the visibility for
performance-critical decisions. To address these challenges,
we present the Streaming Tensor Program (STeP), a new
streaming abstraction that enables dynamic tensor work-
loads to run efficiently on spatial dataflow accelerators. STeP
introduces flexible routing operators, an explicit memory hi-
erarchy, and symbolic shape semantics that expose dynamic
data rates and tensor dimensions. These capabilities unlock
new optimizations—dynamic tiling, dynamic parallelization,
and configuration time-multiplexing—that adapt to dynamic
behaviors while preserving dataflow efficiency. Using a cycle-
approximate simulator on representative LLM layers with
real-world traces, dynamic tiling reduces on-chip memory
requirement by 2.18x, dynamic parallelization improves la-
tency by 1.5x, and configuration time-multiplexing improves
compute utilization by 2.57x over implementations available
in prior abstractions.

Keywords: Streaming Abstraction, Dataflow Programming
Model, Spatial Dataflow Accelerator, Machine Learning

1 Introduction

Spatial dataflow accelerators (SDAs) [9, 15, 22-24, 36, 37] are
reconfigurable architectures with spatially distributed com-
pute and memory units. Due to their high performance and

Kunle Olukotun
Stanford University
Stanford, USA
kunle@stanford.edu

Explicit Explicit Dynamic

Abstraction 113123 Data Memory Routing D,?ﬁ?::;c
Rate Hierarchy & Merging
Spatial [14] X X X X
Revet [26] X X (limited) X
Streamlt [33] X X X
SAM [12] X X (limited) v (limited)
Ripple [8] X X

STeP
Table 1. Landscape of programming abstractions for SDAs

energy efficiency, SDAs have gained popularity as an alterna-
tive to general-purpose processors and GPUs across several
applications, mainly focusing on tensor applications [9, 15,
22, 23, 26]. Prior work on the compiler and the architecture
of SDAs demonstrates that several static tensor applications
can be effectively mapped to SDAs [9, 14, 24, 41].

However, the need to support dynamic tensor applica-
tions is rapidly growing. As an example, the input data has
dynamic or ragged shapes in machine learning (ML) appli-
cations due to varying batch sizes, image resolutions, and
prompt lengths [20, 21, 28, 38]. This makes efficient paral-
lelization and spatial mapping challenging. Moreover, dy-
namic control flow is also heavily used in applications with
the advent of dataflow applications that sparsely activate
parts of the computation graph [4, 18, 39].

Many such dynamic workloads can be characterized as
asynchronously running blocks communicating with each
other. This characteristic aligns well with the execution
model of SDAs, where compute and memory units run asyn-
chronously and communicate via hardware FIFOs. However,

unlike the ample software support for expressing static work-
loads on SDAs, current programming abstractions for SDAs
have limited support for accelerating dynamic workloads, as
shown in Table 1, leaving performance on the table.

Many prior SDAs use an imperative language [9, 14, 26, 41]
as the programming abstraction. While this approach is
general, it requires transforming the imperative code to a
dataflow representation to match the hardware’s execution
model. This makes it challenging to exploit the inherent
parallelism in the application, as imperative code enforces
a sequential order between instructions [41]. Furthermore,
imperative languages lack explicit primitives to express asyn-
chronous execution or queueing, which are crucial for op-
timizing dynamic workloads. The lack of explicit support
for asynchrony and queueing forces their implementation
with complex control and memory instructions, even though
they can be directly mapped to SDA hardware FIFOs with
minimal overhead [8].

On the other hand, dataflow abstractions, such as SAM [12]
Ripple [8], and StreamlIt [33], expose queues at the abstrac-
tion level and enable exploiting the inherent parallelism in
the application. However, none of them model an explicit
memory hierarchy, and many were designed for a specific
domain, limiting their ability to capture the broader range of
dynamic tensor workloads. SAM is limited to sparse tensor
algebra kernels, and Streamlt adopts a synchronous dataflow
model, making it challenging to express dynamic behav-
iors. Ripple adopts a design of asynchronous blocks that can
contain any imperative code. However, Ripple makes the
memory hierarchy implicit in the abstraction. This makes it
difficult to express and discover efficient implementations of
many widely used dynamic tensor applications, such as ML,
where the performance is dictated by the data movement
across the memory hierarchy. Furthermore, the opaque data
rate at the abstraction level requires lifting the imperative
code in each asynchronous block to analyze the program
using the data rates.

To address the limitations of prior SDA dataflow abstrac-
tions in expressing and optimizing dynamism, we propose
the Streaming Tensor Program (STeP), a new streaming ab-
straction for accelerating dynamic tensor applications on
SDAs. STeP expresses data as streams, where tiles and buffers
in the stream can have dynamic shapes. It consists of asyn-
chronous dataflow blocks that provide three key properties:
explicit memory hierarchy, symbolic data consumption and
production rate, and data-dependent control flow operators.

These properties give STeP unique capabilities that were
unavailable in prior abstractions for SDAs. First, it enables
capturing performance-critical metrics such as off-chip traf-
fic, on-chip memory requirement, and operational intensity
at the abstraction level. We show how STeP provides in-
sight into memory-intensive tensor applications and vali-
date the captured metrics with a cycle-accurate simulator
(Section 4). STeP also enables expressing optimizations such

as dynamic parallelization, configuration time-multiplexing,
and dynamic tiling (Section 5), which were not expressible
in prior abstractions for SDAs. We evaluate each optimiza-
tion on representative layers from open-source large lan-
guage models (LLMs) with real-world traces using a cycle-
approximate simulator. Our evaluations show a geometric
mean of 2.1X less on-chip memory requirement with dy-
namic tiling, 2.57X improved compute utilization with config-
uration time-multiplexing, and 1.5X speedup with dynamic
parallelization when compared to the implementations avail-
able in prior abstractions. Lastly, we discuss various ways
and trade-offs for supporting dynamic features of STeP on
SDAs (Section 6).
Overall, our contributions are:

e Anasynchronous dataflow abstraction for SDAs (STeP)
with full support for dynamism (Section 3).

e A symbolic system based on STeP’s shape semantics
to extract performance-critical metrics (Section 4).

e Optimizations that exploit the dynamic features and
explicit memory hierarchy of STeP (Section 5) and an
outline of how those abstract dynamic features would
be supported in SDA hardware (Section 6).

e A performance and resource utilization investigation
on the impact of dynamic optimizations enabled by
STeP on representative LLM applications (Section 5).

2 Background and Related Work

This section provides background on the application, hard-
ware, and related programming abstractions discussed in this
paper. First, we explain representative dynamic behaviors
in tensor applications, using ML workloads as an example.
We then explain the architecture and execution model of
SDAs. Lastly, we discuss the limitations in expressing effi-
cient implementations for dynamic tensor applications in
prior programming abstractions for SDAs.

2.1 Dynamism in ML

Although dynamism appears in many tensor applications, we
will use ML workloads to illustrate real-world examples of
dynamic behavior throughout this paper. Modern ML models
exhibit diverse forms of dynamism and represent one of the
most widely used tensor applications. ML workloads also
demand high-throughput hardware backends, making them
a primary driver for accelerators.

A prominent source of dynamism in recent ML workloads
is the heavy use of data-dependent control flow. Mixture-
of-Experts (MoE) is a model architecture where a subset of
parameters, called experts, is activated for each input ac-
tivation. With every top-ranked open-source model now
adopting the MoE architecture [3, 10, 16, 16, 29, 31, 32, 39]%,
efficiently handling the divergence introduced by such con-
trol flow has become increasingly important.

1According to https://Imarena.ai/leaderboard, accessed on August 12, 2025.

https://lmarena.ai/leaderboard

Dynamic tensor shapes are also common in ML workloads,
which arise from external parameters specified at runtime,
such as the number of concurrent user requests, image resolu-
tion, and sequence length [28, 38]. The control flow described
above further amplifies this effect by making the input shape
to each expert determined only during execution.

In addition, efficiently parallelizing unevenly sized work-
loads has become essential. Most state-of-the-art ML mod-
els are autoregressive, generating each new output based
on the previously produced context. To avoid redundant
computation, activations from prior context are stored sep-
arately (referred to as KV caches in autoregressive models).
However, the length of this context can vary widely across
users [21, 42], leading to substantial imbalance in both mem-
ory footprint and the computation required per request.

2.2 Spatial Dataflow Accelerators

Spatial dataflow accelerators [9, 15, 24, 26, 36, 37] are pro-
grammable architectures with spatially distributed hardware
resources. A typical SDA consists of an array of reconfig-
urable compute units and memory units that communicate
via hardware FIFOs and a network-on-chip. Instead of ex-
ecuting a sequential instruction stream as in the von Neu-
mann model, SDAs represent programs as dataflow graphs,
where nodes denote operations and edges represent explicit
data dependencies. Therefore, imperative abstractions also
ultimately lower the code into a dataflow representation
to match the hardware’s execution model [14, 26, 41]. The
nodes in a dataflow program graph are mapped to distributed
compute and memory units, and the edges are mapped to
hardware FIFOs and network-on-chip. The storage in SDAs
is organized into multiple tiers, such as local PE storage, on-
chip memory units, and off-chip memory. Most SDAs rely on
the compiler or runtime to explicitly schedule when data is
loaded from one tier of storage to another and when results
are written back [11, 14].

2.3 Programming abstractions for SDAs

SDAs can be programmed with either an imperative [9, 14,
26] or a dataflow programming abstraction [8, 12, 33] as
listed in Table 1. While the imperative abstractions provide
high generality, they lack explicit support for asynchronous
execution and queues. The absence of these features in the
imperative abstractions incurs overhead when supporting
dynamic applications.

Spatial [14] is an imperative programming abstraction for
FPGAs and SDAs that uses nested loops and provides explicit
control over the memory hierarchy. However, control flow
can only occur in restricted places in the program, and all
memory constructs must be statically sized, making dynamic
behaviors hard to capture. Furthermore, transforming imper-
ative loops into dataflow graphs that can be mapped to the

hardware introduces complexity in the compiler [41], and
potentially results in suboptimal schedules.

Revet [26] extends Spatial with a dataflow thread abstrac-
tion and constructs for dynamic routing and merging, im-
proving support for irregular applications. However, the
dataflow thread abstraction forces the data passed to the dy-
namic constructs to be scalars. This severely limits available
parallelism, making it impractical to optimize many dynamic
applications that operate on large tensors.

Dataflow abstractions address these limitations with built-
in support for dataflow and queueing. However, prior work
either focuses only on a specific domain or lacks visibility
and control over performance-critical decisions in many
dynamic tensor applications.

Streamlt [33] is a synchronous dataflow abstraction used
to map stream applications. It is not an abstraction dedicated
to SDAs and can be used to target various streaming back-
ends. Each node in the program graph has fixed, compile-
time—known rates for consuming and producing data in
the stream. While this design enables several optimizations
based on known data rates, this limits its ability to capture
dynamic applications.

SAM [12] is the first asynchronous streaming tensor ab-
straction for SDAs. It introduces a clean dataflow model with
primitives that can express the full space of sparse tensor
algebra computations as streaming dataflow graphs. How-
ever, SAM is limited to sparse tensor operators, making it
well-suited for exploring sparse workloads but not for dense
dynamic tensor applications.

Ripple [8] is an asynchronous dataflow abstraction, where
asynchronous blocks of imperative code communicate via
queues. While Ripple can express general asynchronous exe-
cution and communication, this design makes the data rates
of each asynchronous block opaque, requiring the compiler
to deduce them from the imperative code. In addition, the
memory hierarchy is implicit in the abstraction. While this
is sufficient for graph analytics and sparse workloads with
inherently low reuse, dynamic tensor applications, such as
dense ML, exhibit high temporal and spatial reuse. In these
settings, having visibility and control over the data move-
ment across the memory hierarchy becomes essential for
performance.

3 Streaming Tensor Program

Streaming Tensor Program (STeP) is a streaming abstraction
for dynamic applications running on SDAs. In this section,
we describe the stream representation and operators of STeP.
We explain how STeP’s features enable efficient implementa-
tions that exploit dynamic parallelism and allow the analysis
of performance-critical properties of the program.

3[1]
31818, 2458,D 1
D 2[4]5]
Stream Tensor

Figure 1. A tensor represented as a rank-2 STeP stream. The
done token (D) denotes the end of the stream.

3.1 Stream-centric Design

As an asynchronous dataflow model, STeP uses streams
as the primary representation for data. Each stream has a
compile-time determined rank and data type.

Data Type. The data type of a stream can either be a tile,
a selector, a reference to on-chip memory, or a tuple of these
data types. A tile is a two-dimensional regular matrix. STeP
allows tiles to have dynamically defined shapes. Supporting
dynamically-sized tiles is crucial for maximizing data reuse
without excessive on-chip memory requirements when tiling
tensors with runtime-determined shapes. A selector is a
multi-hot vector, which can express various routing and
merging operators to support control flow (Section 3.2.3).
STeP also enables read-only reference (i.e. addresses) to on-
chip memory as the stream data type (Section 3.2.2). The
flexibility in data type enables lowering STeP to a broader
range of SDAs more easily. For example, when the stream
data type is restricted to only scalars, it cannot be directly
mapped to SDAs with tiled processing units like systolic
arrays without complicated lifting (e.g. auto-vectorization).

Stream Structure. STeP streams are logically equivalent
to zero or more tensors. We draw this connection because
higher-order tensors are the basic data structure of many
computational workloads. STeP streams embed the logical
structure of the corresponding tensor into the data stream
using stop tokens as shown in Figure 1. We use a similar
stop token design to that of SAM [12] because it fits well
with the asynchronous dataflow model and allows the size of
each dimension to be dynamic. The end of each dimension
of the corresponding tensor is annotated with a stop token
SN(N > 1), where N denotes the rank of that dimension (e.g.
N =1 denotes the end of a vector). At the end of multiple
dimensions, we only emit the highest-level stop token.

The logical correspondence between a tensor and an STeP
stream provides a foundation for defining shape semantics
for streams. These semantics enable analyses and optimiza-
tions, and also improve debuggability by exposing dataflow
block behaviors at the tensor level and ensuring operator
composability. Unlike the shape semantics of streams in syn-
chronous dataflow models [33], which are straightforward
due to the fixed data rates, the shape semantics in asynchro-
nous dataflow models require a more careful design.

Each STeP stream has a rank which is determined by
the dimensionality of the corresponding tensor(s) in the
stream. A rank-N stream with a data type T is a stream of
zero or more N-dimensional tensors of T and has a shape
[DN, - -+, D1, Do]. To build shape semantics while also ex-
pressing dynamic behaviors, we allow each D; to be either
a static-regular, a dynamic-regular, or a ragged dimension.
We express the shape of dynamic-regular and ragged di-
mensions with equations and symbols, such as B; and C; in
Figure 2. The ragged dimensions have an absorbing property
in the equations. If a dimension’s shape equation contains
the shape of a ragged dimension, that dimension will be
treated as a new ragged dimension.

3.2 STeP operators

In this section, we describe STeP operators and their shape
semantics. Each operator takes in input streams, operator-
specific arguments, and outputs streams.?

3.2.1 Off-chip Memory Operators. Off-chip memory op-
erators express the interface between on-chip and off-chip
memory. One of the unique design decisions of STeP com-
pared to other asynchronous dataflow models [8, 12] is mak-
ing the memory hierarchy explicit. Coupled with the shape
semantics, the off-chip memory operators enable capturing
metrics that provide performance insights, such as off-chip
memory traffic and operational intensity. Furthermore, they
expose performance-critical decisions to the user or compiler
at the abstraction level.

LinearOff ChipLoad loads the input tensor from off-chip
memory to on-chip memory in tiles. It supports affine
reads over the stored tensor based on the underlying shape,
stride, and output shape arguments. The operator has a ref-
erence stream that enables the viewed tensor to be dynam-
ically broadcast along the reference stream by triggering
an affine read over the tiled tensor on every element in the
reference stream. In Figure 2, the first LinearOffChipLoad
takes an input stream of shape [C;] and linearly reads the
underlying tensor of shape [4096, 14336], resulting in a
[Ci, 1, 224] shaped stream of [4096, 64] shape tiles.

LinearOff ChipStore linearly stores the input stream’s stat-
ically sized tiles to off-chip memory at the given address.

RandomOffChipLoad supports random-access reads into
tensors stored in off-chip memory. RandomOffChipLoad
takes the base address, tile shape, and the underlying tensor
shape as arguments. The operator has an input stream that
specifies the tile addresses, which are an offset from the
given base address.

RandomOffChipStore enables random-access stores to
off-chip memory. The operator takes the same arguments

2A supplementary syntax and shape semantics are provided in the appendix.

—————— = = —

| [C;, 16] Stream shape |

I [16,64] Tile shape [

I
|
! i Padding stream o* |
} Padding stream g . FlatViap }
| — LinearOffChipLoad L[C:, 1, 224] Flatten fn=FilterPadding |
Selector stream eshape underlying=(4k, 14k) " o rank_range=[0,1] A |
} S ying [4096, 34]224 [C; 16| 1. 4096] (B] SJel‘ector stream‘
\ - [B]»| chunk=16 [C}, 224] FlatM . \
| | Partition |—'°i 4-0.0 Reshape o atMap Reassemble | |
| rank=0 pa =0 rank=0 Map (C.. 2241 Map fn:RetlIe?treamlfy rank=0 |
} [C;, 16][I,4096][C]’ chunk=1 fn=Matmul [Ilé 64] fn=SiLU [C][16,4096] }
A (6,4096 ' / ! Accum nB2 |
L [1,409] Accum L> 7000 Expand |ic 2941, ~Map Map rank=1 Ca0o61 |
! rank=1 n=[224] | fn=Matmul fn=ElemMul - [1,4096]
| sum(B)=2*B frRetiloR [16,4096] > fn=Matmul I
| ' n=netloRow [C,, 224][4096, 64] 4 |
\ C;=(B;+15)//16 LinearOffChipLoad Flatten [C;, 224] |64, 4096] |
} underlying=(4k, 14k) " |rank_range=[0,1] L |
} _ | LinearOffChipLoad Flatten — }
| Expert i underlying=(14k, 4k) rank_range=[0,1] On-chip |

[Off-chip Memory]

Figure 2. Example STeP graph for an MoE layer in Mixtral8x7B. A token routes to 2 experts, and an expert computes
(SiLU (xWy) * (xWs))W,. A stream is described with its shape and the shape of tiles on it. Different colors represent different
kinds of STeP operators. Some operators have arguments omitted for simplicity. Expand with n=[224] is a syntax sugar for

static repeating.

as RandomOffChipLoad. The operator takes a write ad-
dress stream and a write data stream, and outputs a stream
specifying that the write has finished.

3.2.2 On-chip Memory Operators. Based on STeP’s de-
sign decision to make the memory hierarchy explicit, we
introduce on-chip memory operators that convert between
streams and on-chip memory. These operators are used to
express buffering (parts of) streams on-chip to avoid off-chip
memory accesses or recomputation. This expressiveness re-
veals a vast design space of implementations that trade off
on-chip memory requirements and off-chip traffic. Further-
more, the shape semantics of STeP enable capturing this
trade-off, providing insight into the vast design space it ex-
presses.

Bufferize reads in data from the input stream and stores
it in an on-chip memory in linear order. The operator
requires a bufferize rank argument. Once the operator fin-
ishes creating on-chip memory with the bufferize rank,
a reference is emitted to the output stream, and the op-
erator starts accumulating into a new on-chip memory.
Given a bufferize rank of b and an input stream shape of
[Dg, -+, Dp, -+, Do], the output stream shape is [Dy, - - - ,
Dy] and the allocated on-chip memory shape is [Dp_1, - - -
Dy]. STeP allows storing a dynamically-sized regular ten-
sor in on-chip memory. This enables maximizing data reuse
with minimal on-chip memory when the application intro-
duces dynamically sized tensors.

Streamify performs an affine read over the tensor stored
in on-chip memory based on the stride and the output

shape argument. The operator also takes in a repeat rank
to support dynamic broadcasting of the accessed tensor.
Assume a repeat rank of c(c>1). Let the reference stream
have shape [Dy,...,Do,D,_,,...,D;] and the data stream
have shape [D,, ..., Dy], where each element in the data
stream is a reference to an on-chip buffer produced by
Bufferize. For every element in the reference stream, an
affine read is issued repeatedly over the same buffer until
all of the inner ¢ dimensions of the reference stream are
consumed. As a result, the output stream has shape of
[Dg, -+, Do, D;_y,-++,Dg, D}/, -+, D{’], where the last
b dimensions (D;”_, —Dy') represent the shape of the viewed
tensor and the middle ¢ dimensions (D, _, — D;) are added
due to the broadcasting along the reference stream. STeP
supports reading data from on-chip memory with dynamic
shapes. In this case, we ignore the stride and output shape
arguments, and the operator does a linear read. Bufferize
and Streamify together provide full round-trip access to
statically- and dynamically-sized on-chip memory.

3.2.3 Dynamic routing and merging operators. To ef-
ficiently support data-dependent control flow and dynamic
parallelism, the routing and merging capabilities presented
in this section are crucial. Many prior SDA abstractions [14,
26, 33] either lack support for dynamic routing and merging
or only support it under specific restrictions that significantly
limit the available parallelism. Therefore, STeP introduces
dynamic routing and merging operators that can operate on
flexible data types.

DS;...00)(0,€ (0,1
[1, B]

[By, 2
DS, $,22S,11S,00 iti 017927'"1812231118100
o Sy 1 1 Partition [—l’__2_18100
[1,B,2] rank=1 i [Be, 2]
' e—...S411

Figure 3. An example of a Partition operator. B; in each
output stream is a newly created dynamic regular dimension.

D (0, €) (0, 1)
2/}

2. B0]DS, 225,050
[1.3]DS,333+1

Reassemble D822281 11 8233381 0
—_—

rank=1 [2‘ BselyBl]

-

[1,2]Ds11 1

Figure 4. An example of a Reassemble operator. The multihot
vector is expressed as tuples. Unless the selector is a k-hot,
B 1s a ragged dimension as the selector is multihot.

Partition routes chunks of data from the input stream to
multiple output streams based on the data in the selec-
tor stream. The operator takes a partition rank argument,
which is the number of innermost dimensions (i.e., gran-
ularity) that are routed at a time to the selected output
stream on each selector. Outer-level dimensions of the
partition rank are flattened together as shown in Figure 3.

Reassemble takes a list of input streams and merges data
from each stream based on the selector stream, as shown
in Figure 4. The input streams must all have the same rank
b. On every element in the selector stream, the inner b di-
mensions from the chosen input streams are concatenated,
starting from the input stream that arrives first.

EagerMerge is similar to Reassemble but does not take in
a selector stream. The inner b dimensions from each input
stream are instead concatenated in the order they arrive.
The operator has two output streams: the data stream
and the selector stream, which denotes the index of the
input stream from which each chunk of the stream was
collected. Figure 10 shows its usage in dynamic paralleliza-
tion.

3.2.4 Higher-order Operators. These operators take a
function supported by the hardware as an argument. They
are primarily used to perform arithmetic computations on
the stream data or to pack or unpack between data types.

Map expresses element-wise functions (e.g., SiLU in Fig-
ure 2) and does not change the shape of the stream.

Accum reduces over multiple inner dimensions of a stream.
The operator takes the number of inner dimensions to re-
duce over, an initialization function, and the update func-
tion as arguments. The accumulator is initialized at the
beginning of every reduction and gets updated on every

element in the input stream with the update function. The
operator can also be used to express packing multiple ele-
ments in the stream into a single data type, as shown in
the Accum block with the RetileRow function in Figure 2.
This improves data reuse with more efficient tiling and
leveraging tiled compute units such as systolic arrays.

Scan is similar to Accum but emits the state of the accu-
mulator on every input element. Therefore, the input and
output streams have the same shape.

FlatMap expands each element in the stream to a stream
of rank b by applying the supplied function. The resulting
streams are concatenated into a single output stream. This
can also express unpacking a larger data type into a stream
of smaller data types, as shown in the FlatMap with the
RetileStreamify function in Figure 2.

3.2.5 Shape Operators. Shape operators do not change
the content of each element in the stream, but rather change
the logical structure (or shape) of the stream by manipulating
stop tokens.

Flatten takes the indices of two dimensions, which specify
the range of dimensions that will be flattened.

Reshape splits a dimension into statically sized chunks.
When splitting the inner-most dimension, the operator
takes in a padding value as an argument. The operator
has two output streams: the data stream and the padding
stream. The padding stream specifies whether each ele-
ment in the output data stream is padded.

Promote adds a new outermost dimension to the input
stream. Given the outermost dimension of the input stream
is D, the new outermost dimension can be expressed as
an equation (1 if (D, > 1) else 0) if D, is a dynamic
dimension and or 1 otherwise.

Expand expands the consecutive innermost dimensions
with shape 1 in the input data stream along the reference
stream. Given an input stream shape of [Dg - -+, 15 -+, 1¢]
and a reference stream shape of [Dg, - - -, Dp, - - -, Dy], the
output stream has the same shape as the reference stream.

Zip groups two streams with the same shape into a single
stream with a tuple data type. This enables higher-order
operators to take functions with multiple arguments.

4 Symbolic STeP Frontend and
Performance Model

In this section, we describe the symbolic frontend that im-
plements the STeP shape semantics discussed in Section 3.
We then present our performance model, which captures
the behavior of STeP graphs on SDAs, along with a cycle-
approximate simulator that implements it. We validate the
performance model against a cycle-accurate hardware de-
scription language (HDL) simulation.

4.1 Symbolic Frontend

We implement a symbolic frontend for STeP in Python. The
explicit memory hierarchy and shape semantics in STeP
enable capturing metrics such as the on-chip memory re-
quirements, off-chip traffic, and operational intensity of a
given STeP graph.

Off-chip Traffic. Every STeP operator implements a func-
tion that returns the symbolic expression for the off-chip
traffic in bytes made by that operator. For off-chip memory
operators (Section 3.2.1), this equation is:

(output stream cardinality) X (ouput stream data type size)

To simplify the logic for calculating the cardinality of the
output stream in our implementation, we restrict the output
stream of off-chip memory operators to contain a ragged
dimension only in the two outermost dimensions. In this
case, we introduce a new symbol representing the sum of
the ragged dimension, which is then multiplied by the size
of the inner dimensions. Other operators return zero as they
do not interact with off-chip memory.

We obtain the total off-chip traffic by summing up the re-
turned expressions for every operator in the program graph.
If we assume that no off-chip memory spilling will occur in
other STeP operators, this becomes the amount of off-chip
accesses made for the given program implementation, and
can be used to derive the operational intensity. If we assume
operators can spill to off-chip memory, this metric serves as
a lower bound for the off-chip traffic, and derives an upper
bound for operational intensity.

On-chip Memory Requirement. Every STeP operator
implements a function that returns the symbolic expression
for the on-chip memory required in bytes for the operator.
The equation for the on-chip memory requirement can be
programmed accordingly to reflect the assumptions in the
hardware or the requirements of the functions supplied to
higher-order operators (Section 3.2.4). In our simulator, we
use the following equations for each operator. We use dtype
for data type, ||X|| to denote the cardinality of a Buffer X,
and |x| to denote the size of a data type x. Other operators
return zero as they do not interact with on-chip memory.

Off-chip memory operators: |output diype| X 2
Bufferize: |input dtype| + ||buf fer|| X |input dtype| X 2
We multiply by 2, assuming double buffering. Since regular
dimensions are only allowed in the buffer shape, the buffer
cardinality is the product of the buffer shape’s dimensions.
Accum, Scan, Expand: |output dtype|
Map, Accum with matrix multiplication:
(16 x in_tile_col + |weight tile| + |output tile|)
The in_tile_col denotes the input tile’s innermost dimen-
sion size. The output tile size is only added if the operator
is Accum. We count the space to store parts of the input tile

and the whole weight tile since matrix multiplication re-
quires repeated access over dimensions in both operands.
The value 16 is used to reflect the hardware internally
splitting tiles described in the STeP level into smaller tiles
that can map to the hardware’s compute unit tiles.

The total on-chip memory requirement is obtained by sum-
ming up the returned expressions for every operator in the
program graph. For SDAs that statically allocate/deallocate
on-chip memory, this represents the amount of on-chip mem-
ory required to avoid additional off-chip traffic due to limited
capacity. For SDAs that dynamically allocate/deallocate on-
chip memory, this serves as an upper bound.

STeP’s symbolic expression of shapes and operators agnos-
tic to the concrete shape of the input data enables describing
the program once and substituting the symbols in the equa-
tions for off-chip traffic and on-chip memory requirement
with various input shapes or control flow decisions.

4.2 Performance Model for the Simulator

Since the symbolic STeP frontend has no timing information,
we implement a simulator backend for STeP in Rust using
the Dataflow Abstract Machine [40] simulation framework.

To model the data transfer between off-chip memory and
on-chip memory, the simulator implements an HBM node
that emulates the timing behavior of Ramulator 2.0 [17], a
cycle-accurate DRAM simulator. The latency of accessing
on-chip memory is factored into the higher-order operators
that execute arithmetic functions, using a roofline model.
Each higher-order operator is allocated a compute bandwidth
(FLOPs/cycle). On each input element in the stream, the
operators increment cycles based on the following equation:

size of inputs total FLOPs
on-chip mem BW’ compute BW’ on-chip mem BW

size of outputs

The total FLOPs for a given set of inputs are computed
within the function supplied to the higher-order operators, as
this value depends on the specific computation the function
performs. The first and last entries in the equation are zero
when the input and output are streamed directly between
compute units without passing through an on-chip memory
unit.

For routing and merging operators with an input selector
stream (Section 3.2.3), data in the selector stream is first de-
queued. In the next cycle, data in the chosen input stream is
dequeued and enqueued to the output stream with a single
cycle latency. The selection stream is blocked until the rout-
ing for the current selection is finished. For the remaining
operators, we assume a single cycle latency.

4.3 Validation

We validate the simulator by comparing the performance
to a cycle-accurate HDL simulation. We also compare the
off-chip traffic captured in the symbolic STeP frontend with

the performance to validate the usefulness of the metrics

captured in the symbolic frontend.

Workload and Hardware Model We use a SwiGLU [27]

layer as the workload since it contains representative com-
putations in ML models such as matrix multiplication, ac-
tivation function, and row-wise reduction. The STeP graph
for the SwiGLU layer corresponds to a single expert in Fig-
ure 2. We choose a spatial architecture of compute units

that operate on 16 X 16 BFloat16 tiles, each having an initia-
tion interval of one. We pair compute tiles with distributed
on-chip memory units, each capable of reading and writing

one tile per cycle. Off-chip memory is modeled as an HBM2

subsystem with 8 stacks and is simulated in Ramulator2 [17].
To match the hardware configurations, we set the on-chip
memory bandwidth to 256 (bytes/cycle) and use the same

HBM configuration in the STeP simulator.

Validation Methodology To match the granularity of the

hardware tiles, we apply a graph transformation to the in-
put STeP graph. The input STeP graph’s data, described in
larger logical tiles corresponding to the off-chip/on-chip load
size, is hierarchically partitioned into smaller physical tiles
that match the fabric’s compute tile size. After the transfor-
mation, every node in the graph maps to a dedicated unit
in the HDL design, which we attach to a congestion-free
interconnect. The HDL model is implemented in Bluespec
SystemVerilog and executed in a cycle-accurate BlueSim sim-
ulator [2, 19], with off-chip access delays integrated using
Ramulator2 library calls. We sweep different tile sizes to
cover schedules with varying operational intensities. We
measure the total execution time from the first off-chip read
to the last off-chip write.

Results As shown in Figure 5, the STeP simulator cycle-
count closely matches that of the HDL simulator, with a
Pearson correlation of 0.99. As the application is memory-
bound in the given hardware configuration, decisions on
data transfer across the memory hierarchy significantly im-
pact performance, highlighting the importance of having
visibility and control over these decisions in the abstraction.
The high correspondence between the off-chip traffic cap-
tured in the symbolic STeP frontend and the HDL simulator’s
performance and incurred off-chip traffic suggests that the
metrics captured in STeP can provide valuable insights into
the performance of a given STeP graph.

5 Evaluation

In this section, we evaluate STeP’s ability to explore effi-
cient schedules for dynamic ML models by implementing op-
timizations that were not expressible in prior abstractions for
SDAs: dynamic tiling, configuration time-multiplexing, and
dynamic parallelization. We implement these newly enabled
optimizations on representative layers from dynamic ML

3An example transformation is shown in Figure 12 in the Appendix.

. X HDL Implementation - STeP Simulator
-10
g4 T T T T T T T T T T T T T 1
B3I XKy v sl —
5\ T XK
4 2 X X s S X w
7V 7N
a1 KX
Ool— 1 1+ 1 1 1 1 1 1 1 1 1 | >
L T 1 T T 1 T T T 1 T T 1 1 110 i
[-1 8
I ARV S =
[E\ W N —H6 =
| \< AV4 N N N 4 i Q
N K v W = &
- K¢ Sksd 2 <
/N 7N o -
| | | | | | | | | | | | | | o a':: =
o

O D AP S AP O DS
oo lor (> Vo 0 NV o oo (]
M I S e S K e S
SR R R S S o
NN NGNS e e

-

Tile Size
(Batch Dimension, Hidden Dimension, MoE Intermediate Dimension)

Figure 5. Cycle-count and memory traffic comparison of a
SwiGLU Layer with different tile sizes. The full sizes of the
batch dimension, hidden dimension, and MoE intermediate
dimension are 64, 256, and 512, respectively.

models and simulate them with real-world traces. The work-
loads expose a variety of dynamic behaviors, such as runtime-
determined tensor sizes, parallelizing unevenly sized work-
loads, and data-dependent control flow. We investigate the
performance and resource utilization of these optimizations
using different batch sizes, models, and user requests.

5.1 Methodology

Workload We use two representative layers as our work-
load: grouped query attention (GQA) [1] and MoE with
SwiGLU [27] experts. We choose these two layers because
the majority of recent models [3, 4, 6, 10, 13, 16, 16, 18, 29—
32, 34, 39] use them as their backbone and only vary param-
eters such as number of heads, hidden dimensions, number
of total experts, and selected experts per token.

In the evaluation, we configure the GQA to be the same
as Qwen3-30B-A3B [39] and use the FlashAttention imple-
mentation [5, 25]. The KV cache length for each batch is
sampled from the AzureLLMInference dataset [21]. We ana-
lyze 5,000 requests within a time window, forming batches
with varying prompt length distributions. We then measure
the standard deviation of prompt lengths in each batch and
conduct experiments using batches with average, highest,
and lowest variability.

For the MoE layer, we configure it to match Qwen3-30B-
A3B [39] and Mixtral8x7B [13] and use the expert routing
data collected by running these models using a real-world
request traces from HH-RLHF [7]. To select representative
cases, we measure the standard deviation of expert bin counts
across iterations and layers, and choose the one whose devi-
ation is closest to the overall average.

We write each design point using STeP’s Python frontend
described in Section 4.1. Although we present STeP as a

programming abstraction in this paper, it can also function as
an intermediate representation for compilers. The described
optimizations could be automated as compiler passes in the
future.

Simulator Setup We set the bandwidth of each on-chip
memory unit as 64 (bytes/cycles), which matches the config-
uration in existing reconfigurable dataflow accelerators [22,
24], which are a class of SDAs. The off-chip memory band-
width is set to 1024 (bytes/cycle), assuming a HBM con-
figuration of 32 channels. The HBM configuration is set
to match the memory system in the latest reconfigurable
dataflow accelerator [22]. The amount of compute bandwidth
(FLOPs/cycle) allocated is identical across parallel regions
and experts.

Baseline Design We chose Revet [26] as our baseline
since it has the most extensive support for control flow and
flexible parallelism among programming abstractions for
SDAs with explicit control over data transfers. We use STeP
to implement schedules expressible in Revet as a baseline for
each optimization. The parallelization and tiling strategies
for statically-sized dimensions are identical, and the allocated
compute bandwidth per node is identical across the baseline
and optimized implementations.

Evaluation Metrics We compare the newly enabled opti-
mizations against the baseline by simulating them using the
cycle-approximate simulator described in Section 4. Along
with performance, we also compare metrics such as off-chip
traffic and on-chip memory requirements using the symbolic
equation described in Section 4.1 for each metric in the STeP
operators.

5.2 Dynamic Tiling

Dynamic tiling is a scheduling strategy where the size of a
tile in a data stream is determined at runtime, rather than
fixed at compile time. In the context of mapping MoEs to
SDAs, it means grouping tokens routed to each expert into
tiles whose size adapts to the actual number of tokens per
expert in each batch. Unlike static tiling, which fixes tile sizes
in advance, dynamic tiling lets each tile exactly match the
active workload. This flexibility allows for high data reuse
with minimal memory overhead, whereas static tiling forces
a trade-off. Small tiles lead to frequent off-chip reloads, while
large tiles waste on-chip memory by padding unused space.
Furthermore, the optimal tile size varies depending on the
model and user prompts. Dynamic tiling enables maximizing
data reuse consistently under such dynamic changes.

STeP supports dynamic tiling for MoE workloads with
two key capabilities: (i) tiles in a stream may have sym-
bolic shapes determined at runtime, (ii) its dynamic rout-
ing and merging operators (Section 3.2.3) can operate on
tiled streams, and (iii) data movement across the memory
hierarchy is made explicit in the abstraction. Leveraging
these features, tokens routed to each expert are accumu-
lated into dynamically sized tiles using the Accum operator,

[Tile=16 Tile=64 [Dynamic

0o

236

@ 01,8

0 01.6

fo14

2 Cycles Off-chip On-chip Cycles Off-chip On-chip

Traffic Mem. Traffic Mem.
Mixtral8x7B Qwen3-30B-A3B

Figure 6. Performance and memory requirements of tiling
strategies for gathering tokens per expert. (batch size = 64)

where each resulting tile stream feeds a STeP subgraph imple-
menting the expert’s computation. We obtain the dynamic
tiling STeP graph by replacing the first Reshape operator
in Figure 2 with a Promote. This design maintains SIMD
parallelism across the hidden dimension of tokens and maps
naturally onto tiled compute units (e.g. systolic arrays). It
also accommodates per-batch variations in token-to-expert
assignments without padding or static-shape constraints.
In contrast, MoE implementations in Revet rely on static
tiling, since enabling dynamic tiling would require process-
ing each token as a scalar operation, significantly limiting
performance by restricting the ability to exploit parallelism
across larger dimensions.

In Figure 6 and Figure 7, Revet corresponds to the design
points with static tile sizes. Under static tiling, choosing a
small tile size increases the off-chip traffic, as the expert
weight matrix has to be loaded several times if the expert has
many tokens routed to it. Maximizing weight reuse requires
the tile size to match the batch size, which increases on-chip
memory usage due to excessive padding. Due to this trade-
off, static tiling requires sweeping across tile sizes to find a
balanced design point. However, in environments where the
batch size varies, this approach is not applicable anymore,
since the optimal tile size shifts with the batch size. For
example, for Qwen3-30B-A3B in Figure 6, when the batch size
is 64, a tile size of 16 will achieve less than 25% overhead with
minimal on-chip memory usage. However, when the batch
size increases to 1024, the tile size must be at least 256 to have
less than 25% performance overhead. Dynamic tiling avoids
this trade-off by adapting tile sizes at runtime, achieving
higher performance with lower on-chip memory usage. In
summary, dynamic tiling shows a geometric mean of 1.45x
speedup and 2.18X% less on-chip memory requirement across
different models and batch sizes.

5.3 Configuration Time-multiplexing

Configuration time-multiplexing is an optimization that time-
multiplexes a configuration across different branches with
identical computation structure in applications with data-
dependent control flow. In the context of executing MoE
layers on SDAs, a configuration is time-multiplexed across

[Tile=256 [Tile=1024 [Dynamic
< < <
2 a.é 3.8 3.7 8.1
O ~<.
o o],
° 81.6
Ydnla
= ol.2
ES
2 Cycles Off-chip On-chip Cycles Off-chip On-chip
Traffic Mem. Traffic Mem.
Mixtral8x7B Qwen3-30B-A3B

Figure 7. Performance and memory requirements of tiling
strategies for gathering tokens per expert. (batch size = 1024)

experts dynamically by routing inputs and weights accord-
ingly. We observe that when running batched decoding on
large-expert models (128+ experts), several experts are not
selected within a batch. When experimenting with Qwen3-
30B-A3B with a batch size of 64, approximately half of the
experts receive no tokens in most of the layers and iterations.
Configuring a dedicated region for each expert results in
several compute resources remaining idle due to their sparse
activation.

STeP enables configuration time-multiplexing with two
key capabilities: (i) a dynamic merging operator (Eager-
Merge) that merges multiple streams and sends them to
the downstream pipelines as soon as they are available, and
(ii) the explicit data movement across the memory hierarchy.
For the MoE layer shown in Figure 2, configuration time-
multiplexing is realized by connecting the first Accum opera-
tors of multiple experts to an EagerMerge. Each EagerMerge
has its own configured subgraph for expert computation,
and the three LinearOffChipLoad is replaced by a Rando-
mOffChipLoad, which uses the Selector from EagerMerge to
fetch the appropriate tiled weight for the chosen expert.

Leveraging these features, fewer parallel expert regions
than the total number of experts can be configured, which
enables saving on-chip resources in MoE models with a large
number of experts. The flexibility of EagerMerge and stream
data type in STeP allows exploiting parallelism along the
hidden dimension and the batch dimension in each expert,
and the computation can be mapped to tiled compute units
without complicated lifting. On the contrary, Revet resorts
to the design with dedicated regions for each expert, as it
can only be hacked to support the behaviors of EagerMerge
by mapping the collected token stream for each expert to
a single scalar stream. This severely limits performance by
preventing the use of vectorized or tiled compute units.

To evaluate the resource-saving benefits of configuration
time-multiplexing, we conduct an ablation study by vary-
ing the number of experts sharing the same configured re-
gion. We first apply the optimization to the MoE layer in
Qwen3-30B-A3B using static tiling of tile size 32 for the
batch dimension of each expert, as this is the tile size that
balances the off-chip traffic and on-chip memory for static

10

le5 1e6

3 Mgt ,T
&~ @)
S O g e
€T 055l05 8%
83 -t
e o
5 o] [|
9 = [
— Cycles
o 1003
g_ |(b) s on-Chip
g§ g Memory
=S 20 & Allocated
E) g Compute
o 5 Off-chi
12864 32 16 8 4° ~ — gl

(1) (2) (4) (8)(16)(32)
Parallel Regions (Experts per Region)

Figure 8. Resource usage and performance for the MoE
layer in Qwen3-30B-A3B with different degree of time-
multiplexing. (batch size = 64)

tiling in Qwen3-30B-A3B with batch size 64. As shown in Fig-
ure 8(a), the configuration time-multiplexing enables similar
performance while using less on-chip memory and compute
resources. This frees up the compute resource allocated for
idle experts to be used for other computation. However, the
compute utilization starts to drop as the number of parallel
regions becomes too small. As shown in Figure 8(b), this is
due to the decrease in off-chip memory bandwidth utiliza-
tion, which directly results in a slowdown in performance
as this application is memory-bound.

We also evaluate the effect of configuration time-multi-
plexing with different tiling strategies. For static tiling, the
optimization can improve the compute utilization by 2.64x
with less than 1% performance overhead (Figure 9(a)). Con-
figuration time-multiplexing can also be applied with dy-
namic tiling. When dynamically tiling the batch dimension
of experts according to the number of tokens routed to each
expert, it can further improve performance beyond what is
achievable with static tiling. As shown in Figure 9(b), config-
uration time-multiplexing improves the compute utilization
by 2.51x with less than 5% performance overhead for dy-
namic tiling.

5.4 Dynamic Parallelization

Dynamic parallelization is an optimization that can improve
performance by balancing the load across spatially parallel
regions when parallelizing a dimension with unevenly-sized
workloads. In ML workloads, unevenly-sized workloads ap-
pear in the attention [35] computation in Transformer layers
during decoding due to the variation in the KV cache length
of each request. Static parallelization may hurt performance
because unevenly sized workloads can leave some compute
resources idle. Dynamic parallelization dispatches workload
to idle parallel regions in a greedy manner. This keeps re-
sources busy by dispatching work as soon as downstream

m

S —— Compute Util. %
=20 P s
5 \ ycles oS
= V]
§ 10 e
:4_; < 1% <M\ E
> S
Y5864 32 16 8 4 12864 32 16 8 4 “q::J
(1) (2) (4) (8)(16)(32) (1) (2) (4) (8) (16)(32) o

Parallel Regions (Experts per Region)
(a) Static Tiling (b) Dynamic Tiling

Figure 9. Resource utilization for the MoE layer in Qwen3-
30B-A3B with different tiling strategy for the batch dimen-
sion (batch size = 64). Dynamic tiling has lower compute
utilization compared to static tiling because static tiling has
3.81x higher total FLOPs due to padding. The tile size used
for static tiling is 32.

pipelines become available, thereby balancing the load across
parallel regions, even when workload sizes are non-uniform.

STeP enables dynamic parallelism through its dynamic
routing and merging operators (Section 3.2.3) that can oper-
ate on various stream data types. For GQA, STeP can imple-
ment dynamic parallelization as shown in Figure 10. Each
request is routed to parallel regions using Partition. The
selector stream for the Partition is constructed by merg-
ing a stream from FlatMap for the initial iteration’s round-
robin distribution and a stream from EagerMerge that signals
which parallel region is available. A Partition is added after
EagerMerge to filter out the signals from the last iteration.

As dynamic parallelization also requires the behavior of
EagerMerge, implementing dynamic parallelization in Revet
suffers from a similar problem as in configuration time-
multiplexing (Section 5.3). Therefore, the parallelized GQA
implementation in Revet would adopt one of the static par-
allelization strategies.

To evaluate how dynamic parallelization can improve per-
formance, we compare three different parallelization strate-
gies with varying batch sizes and KV cache length distribu-
tion. Within a head, the batch dimension is parallelized by
four. Coarse-grained static parallelization statically sets the
number of requests processed in each parallel region (in our
implementation, we use 16). Interleaving static paralleliza-
tion distributes requests in a round-robin manner.

As shown in Figure 11, interleaving static parallelization
performs better for smaller batch sizes (B=16) because the
coarse-grained static parallelization can only utilize a por-
tion of the allocated resource when receiving smaller batch
sizes. However, for larger batch sizes (B=64), coarse-grained
static parallelization performs better as it avoids workload
distribution being blocked by a single request with a long
KV cache. To avoid this blocking, the interleaving static par-
allelization requires large buffers in front of each parallel
region. However, it will still suffer from the load imbalance

11

across parallel regions. We also simulate the case where a
batch with size 64 and 16 is pipelined as micro batches to
see the aggregate effect under different batch sizes. Dynamic
parallelization consistently outperforms static parallelization
across different batch sizes and KV cache length distribu-
tions by dispatching work to parallel regions as soon as they
become free. On average, it delivers a 1.5X geometric mean
speedup compared to the designs available in Revet.

6 Discussion on supporting dynamic STeP
features in SDAs

This section discusses possible approaches to support the
dynamic features in STeP on SDAs. Prior work on SDA ar-
chitecture design [9, 15, 26, 36, 41] demonstrates various
implementations of STeP’s dynamic features, providing a
way to realize the benefits of the optimizations that STeP
enables. We leave an optimal hardware SDA design for STeP
as future work.

6.1 Stop Tokens

Embedding stop tokens in data streams Prior SDAs [15,
26] demonstrate two different ways of implementing the
control-embedded streams. Revet [26] encodes the control
tokens using an out-of-band encoding that adds a few addi-
tional bits per on-chip vector to encode the stop token level.
The vectors are 512-bit (16 X 32-bit) large and four bits are
used to encode the stop token level, assuming the maximum
levels are less than 15. Onyx [15] uses a 16-bit data path
with an additional bit that encodes whether it is a stop token.
While Revet couples the stop tokens with the data, Onyx
separates data and stop tokens, where the 16-bit data path is
used to encode either data or a stop token level.
Architectural support for processing stop-tokens Pro-
cessing control-embedded streams can be done by either
re-purposing existing hardware units or designing a new ded-
icated state machine to process stop tokens. Revet is mapped
to the Aurochs SDA [36], which has compute and memory
units with counter chains that serve as programmable loop
controllers. Revet re-purposes the counter chains to inject
stop tokens into the stream. Onyx, on the other hand, is a
clean-slate design, which adds new dedicated state machines
to process both the data and stop tokens.

6.2 Dynamic Routing and Merging

STeP’s routing and merging operators describe control flow
divergence and convergence. SDAs usually implement these
by physically laying out all possible datapaths and data-
dependently activating the right ones at runtime. This can
be implemented either within the reconfigurable compute
units or directly in the reconfigurable interconnect fabric.
The SARA compiler [41] exemplifies the first approach for
branches in imperative code. The branch predicate is turned

Eager
«—Merge|,’

uonIed

Attention

FlatMap l—

Selector
——|Reassemble

Selector l Attention

——| Partition —

Attention

Figure 10. The STeP graph for dynamic par-
allelization. Shape operators omitted for sim-
plicity.

2 [Static (Coarse) [Static (Interleave) [Dynamic
N w30
©52.0
£31.0
2 High Med Low High Med Low High Med Low
KV $ Length Var. KV $ Length Var. KV $ Length Var.
B=16 B=64 B=64+16

Figure 11. Normalized performance of parallelization strategies relative to
dynamic parallelization. For each class, we sample three batches and report
the geometric mean performance. KV $ is used as shorthand for KV cache.

into a router that can selectively enqueue data into two dat-
apaths, which represent the true and false conditions. This
design isolates dynamic routing decisions within the com-
pute units. Alternatively, RipTide [9] embeds its router into
the network-on-chip interconnect. Its routing resources are
used for both static and dynamic routing decisions, reusing
resources and freeing up the compute units for other work.
An accelerator targetable by STeP could use either approach.

6.3 Dynamic memory and tiling

Runtime-determined tensor sizes To handle tensor sizes
that are unknown at compile time, the memory system must
allocate space at a fixed granularity independent of stream
length and maintain mappings between stream references
and their memory addresses. To support arbitrary sizes with-
out an upper bound, the memory system should also have
a spill mechanism to handle streams that exceed the local
memory capacity. If multiple streams are allocated and deal-
located concurrently, noncontiguous allocation is required
to avoid fragmentation.

Architectural support for dynamic tensor sizes One
possible approach is a hardware-managed mapping cache
(e.g. a linked list) that translates stream references to a se-
quence of noncontiguous physical addresses. With 512 KB of
local memory per unit [22], the mapping cache requires less
than 30 KB of metadata (~6% overhead), comparable to the
tag overhead in conventional caches. Spilling can be handled
by the hardware using a similar mechanism to Ripple [8],
where both data and the corresponding next pointer are au-
tomatically spilled. Since pointers are relatively small com-
pared to a tile, this overhead is minimal. Software-managed
scratchpads, as used in GPUs, can reduce hardware com-
plexity but risk fragmentation. Each approach trades off
flexibility, metadata overhead, and hardware complexity.

7 Conclusion

We introduced the Streaming Tensor Program, a stream-
ing abstraction designed for dynamic tensor applications
on spatial dataflow accelerators. STeP enables optimizations

12

for dynamic workloads that were not expressible in prior
abstractions for spatial dataflow accelerators. The flexible
stream structure and shape semantics also enable capturing
performance-critical metrics at the abstraction level, open-
ing opportunities for further optimizations. As a dataflow
abstraction that treats dynamism as a first-class principle, we
envision STeP will allow exploring richer forms of dynamism
in both applications and hardware architectures.

8 Acknowledgments

We thank Paul Mure, Rubens Lacouture, Christophe Gyur-
gyik, Suguna Velury, Tanmay Garg, Benjamin Driscoll, Raghu
Prabhakar, Alex Rucker, Fredrik Kjolstad, Tian Zhao, Shiv
Sundram, Qizheng Zhang, and Sally Wang for discussion and
their helpful feedback. Gina Sohn was supported by the Stan-
ford Graduate Fellowship. Olivia Hsu was supported in part
by an NSF GRFP. This work was supported in part by DARPA
under the Machine learning and Optimization-guided Com-
pilers for Heterogeneous Architectures (MOCHA) program
(award number HR00112520038), and by the Naval Surface
Warfare Center under Agreement No. N00164-23-9-G057-01.
This research was also supported in part by the Stanford
Data Analytics for What’s Next (DAWN) Affiliate Program.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the aforementioned
funding agencies.

References

(1]

(10]

(11]

(12]

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,
Federico Lebroén, and Sumit Sanghai. 2023. GQA: Training General-
ized Multi-Query Transformer Models from Multi-Head Checkpoints.
arXiv:2305.13245 [cs.CL] https://arxiv.org/abs/2305.13245

Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.
2020. The essence of Bluespec: a core language for rule-based hard-
ware design. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation. 243-257.
Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat,
Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan
Zhang, Evan Rosen, et al. 2025. Gemini 2.5: Pushing the frontier with
advanced reasoning, multimodality, long context, and next generation
agentic capabilities. arXiv preprint arXiv:2507.06261 (2025).

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao,
Deli Chen, Jiashi Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie,
Y. K. Li, Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wen-
feng Liang. 2024. DeepSeekMoE: Towards Ultimate Expert Specializa-
tion in Mixture-of-Experts Language Models. arXiv:2401.06066 [cs.CL]
https://arxiv.org/abs/2401.06066

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
2022. FLASHATTENTION: fast and memory-efficient exact attention
with I0-awareness. In Proceedings of the 36th International Conference
on Neural Information Processing Systems (New Orleans, LA, USA)
(NIPS ’22). Curran Associates Inc., Red Hook, NY, USA, Article 1189,
16 pages.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A.
Mathur, A. Schelten, A. Yang, A. Fan, et al. 2024. The Llama 3 Herd of
Models. arXiv:2407.21783 [cs.AlI] https://arxiv.org/abs/2407.21783
Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yun-
tao Bai, Saurav Kadavath, Ben Mann, Ethan Perez, Nicholas Schiefer,
Kamal Ndousse, Andy Jones, Sam Bowman, Anna Chen, Tom Con-
erly, Nova DasSarma, Dawn Drain, Nelson Elhage, Sheer El-Showk,
Stanislav Fort, Zac Hatfield-Dodds, Tom Henighan, Danny Hernandez,
Tristan Hume, Josh Jacobson, Scott Johnston, Shauna Kravec, Cather-
ine Olsson, Sam Ringer, Eli Tran-Johnson, Dario Amodei, Tom Brown,
Nicholas Joseph, Sam McCandlish, Chris Olah, Jared Kaplan, and Jack
Clark. 2022. Red Teaming Language Models to Reduce Harms: Meth-
ods, Scaling Behaviors, and Lessons Learned. arXiv:2209.07858 [cs.CL]
https://arxiv.org/abs/2209.07858

Souradip Ghosh, Yufei Shi, Brandon Lucia, and Nathan Beckmann.
2025. Ripple: Asynchronous Programming for Spatial Dataflow Archi-
tectures. Proc. ACM Program. Lang. 9, PLDI, Article 157 (June 2025),
28 pages. doi:10.1145/3729256

Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony
Nowatzki, Nathan Beckmann, and Brandon Lucia. 2022. RipTide: A
Programmable, Energy-Minimal Dataflow Compiler and Architecture.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). 546-564. doi:10.1109/MICR0O56248.2022.00046

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang,
Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948 (2025).

Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Oluko-
tun, and Fredrik Kjolstad. 2025. Stardust: Compiling sparse tensor
algebra to a reconfigurable dataflow architecture. In Proceedings of
the 23rd ACM/IEEE International Symposium on Code Generation and
Optimization. 628-643.

Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle
Olukotun, Joel S. Emer, Mark A. Horowitz, and Fredrik Kjelstad. 2023.
The Sparse Abstract Machine. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS
2023). Association for Computing Machinery, New York, NY, USA,

13

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

710-726. doi:10.1145/3582016.3582051

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Men-
sch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel,
Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile
Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El
Sayed. 2024. Mixtral of Experts. arXiv:2401.04088 [cs.LG] https:
//arxiv.org/abs/2401.04088

David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,
Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,
Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: a language
and compiler for application accelerators. SIGPLAN Not. 53, 4 (June
2018), 296-311. doi:10.1145/3296979.3192379

Kalhan Koul, Maxwell Strange, Jackson Melchert, Alex Carsello,
Yuchen Mei, Olivia Hsu, Taeyoung Kong, Po-Han Chen, Huifeng
Ke, Keyi Zhang, Qiaoyi Liu, Gedeon Nyengele, Akhilesh Balasingam,
Jayashree Adivarahan, Ritvik Sharma, Zhouhua Xie, Christopher
Torng, Joel Emer, Fredrik Kjolstad, Mark Horowitz, and Priyanka Raina.
2024. Onyx: A 12nm 756 GOPS/W Coarse-Grained Reconfigurable
Array for Accelerating Dense and Sparse Applications. In 2024 IEEE
Symposium on VLSI Technology and Circuits (VLSI Technology and Cir-
cuits). 1-2. doi:10.1109/VLSITechnologyandCir46783.2024.10631383
Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu,
Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong
Ruan, et al. 2024. Deepseek-v3 technical report. arXiv preprint
arXivi2412.19437 (2024).

Haocong Luo, Yahya Can Tugrul, F. Nisa Bostanci, Ataberk Olgun,
A. Giray Yaglik¢i, , and Onur Mutlu. 2023. Ramulator 2.0: A Modern,
Modular, and Extensible DRAM Simulator.

Meta AL 2025. The Llama 4 Herd: The Beginning of a New Era
of Natively Multimodal Models. https://ai.meta.com/blog/llama-4-
multimodal-intelligence/

Rishiyur Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL
from high level specifications. In Proceedings. Second ACM and IEEE
International Conference on Formal Methods and Models for Co-Design,
2004. MEMOCODE04. IEEE, 69-70.

Bowen Pang, Kai Li, and Feifan Wang. 2025. Optimizing LLM Infer-
ence Throughput via Memory-aware and SLA-constrained Dynamic
Batching. arXiv:2503.05248 [cs.DC] https://arxiv.org/abs/2503.05248
Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Iiigo
Goiri, Saeed Maleki, and Ricardo Bianchini. 2024. Splitwise: Efficient
generative llm inference using phase splitting. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Architecture (ISCA).
IEEE, 118-132.

Raghu Prabhakar. 2024. SambaNova SN40L RDU: Breaking the Barrier
of Trillion+ Parameter Scale Gen Al Computing. In 2024 IEEE Hot Chips
36 Symposium (HCS). 1-24. doi:10.1109/HCS61935.2024.10664717
Raghu Prabhakar, Sumti Jairath, and Jinuk Luke Shin. 2022. Sam-
baNova SN10 RDU: A 7nm Dataflow Architecture to Accelerate Soft-
ware 2.0. In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), Vol. 65. 350-352. doi:10.1109/1SSCC42614.2022.9731612
Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian
Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle
Olukotun. 2017. Plasticine: A Reconfigurable Architecture For Parallel
Paterns. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (Toronto, ON, Canada) (ISCA ’17). Association
for Computing Machinery, New York, NY, USA, 389-402. doi:10.1145/
3079856.3080256

Markus N. Rabe and Charles Staats. 2022. Self-attention Does Not
Need O(n?) Memory. arXiv:2112.05682 [cs.LG] https://arxiv.org/abs/
2112.05682

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2209.07858
https://arxiv.org/abs/2209.07858
https://doi.org/10.1145/3729256
https://doi.org/10.1109/MICRO56248.2022.00046
https://doi.org/10.1145/3582016.3582051
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://doi.org/10.1145/3296979.3192379
https://doi.org/10.1109/VLSITechnologyandCir46783.2024.10631383
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://arxiv.org/abs/2503.05248
https://arxiv.org/abs/2503.05248
https://doi.org/10.1109/HCS61935.2024.10664717
https://doi.org/10.1109/ISSCC42614.2022.9731612
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1145/3079856.3080256
https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2112.05682

[26]

[27]

(28]

[29]

(30]

Alexander C. Rucker, Shiv Sundram, Coleman Smith, Matthew Vilim,
Raghu Prabhakar, Fredrik Kjolstad, and Kunle Olukotun. 2024. Revet:
A Language and Compiler for Dataflow Threads . In 2024 IEEE
International Symposium on High-Performance Computer Architec-
ture (HPCA). IEEE Computer Society, Los Alamitos, CA, USA, 1-14.
doi:10.1109/HPCA57654.2024.00016

Noam Shazeer. 2020. GLU Variants Improve Transformer.
arXiv:2002.05202 [cs.LG] https://arxiv.org/abs/2002.05202

Jovan Stojkovic, Chaojie Zhang, fhigo Goiri, Josep Torrellas, and Esha
Choukse. 2024. DynamoLLM: Designing LLM Inference Clusters for
Performance and Energy Efficiency. arXiv:2408.00741 [cs.Al] https:
//arxiv.org/abs/2408.00741

GLM-4.5 Team. 2025. GLM-4.5: Agentic, Reasoning, and Coding (ARC)
Foundation Models. https://arxiv.org/abs/2508.06471

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino
Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexan-
dre Ramé, Morgane Riviere, Louis Rouillard, Thomas Mesnard, Ge-
offrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec,
Michelle Casbon, Etienne Pot, Ivo Penchev, Gaél Liu, Francesco Visin,
Kathleen Kenealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin, Robert
Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman, Yi
Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan
Eyal, Colin Cherry, Jan-Thorsten Peter, Danila Sinopalnikov, Surya
Bhupatiraju, Rishabh Agarwal, Mehran Kazemi, Dan Malkin, Ravin
Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner,
Abe Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady,
Adrian Goedeckemeyer, Alaa Saade, Alex Feng, Alexander Kolesnikov,
Alexei Bendebury, Alvin Abdagic, Amit Vadi, Andras Gyorgy, An-
dré Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine
Yang, Antonia Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot,
Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie Chen, Charline Le
Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Pa-
paras, Divyashree Shivakumar Sreepathihalli, Doug Reid, Dustin Tran,
Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene Kharitonov, Fred-
erick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
Klimczak-Plucinska, Harman Singh, Harsh Mehta, Harshal Tushar
Lehri, Hussein Hazimeh, Ian Ballantyne, Idan Szpektor, Ivan Nardini,
Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder
Singh, Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff,
Linhai Qiu, Marcella Valentine, Marina Coelho, Marvin Ritter, Matt
Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan,
Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola
Momchev, Nilay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil
Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton, Philipp
Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti,
Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby,
Rohith Vallu, Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin,
Shariq Igbal, Shashir Reddy, Shruti Sheth, Siim Pdder, Sijal Bhatna-
gar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tiangi
Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant
Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov, Woohyun
Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan
Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand
Rao, Kat Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gus-
tavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris
Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral,
Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov,
Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff Dean, Demis Hass-
abis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-
Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud,
Olivier Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert
Dadashi, and Léonard Hussenot. 2025. Gemma 3 Technical Report.

14

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

arXiv:2503.19786 [cs.CL] https://arxiv.org/abs/2503.19786

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen,
Ningxin Chen, Ruijue Chen, Yanru Chen, Yuankun Chen, Yutian
Chen, et al. 2025. Kimi K2: Open Agentic Intelligence. arXiv preprint
arXiv:2507.20534 (2025).

Tencent Hunyuan Team, Ao Liu, Botong Zhou, Can Xu, Chayse Zhou,
ChenChen Zhang, Chengcheng Xu, Chenhao Wang, Decheng Wu,
Dengpeng Wu, et al. 2025. Hunyuan-TurboS: Advancing Large Lan-
guage Models through Mamba-Transformer Synergy and Adaptive
Chain-of-Thought. arXiv preprint arXiv:2505.15431 (2025).

William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002.
Streamlt: A Language for Streaming Applications. In Proceedings of
the 11th International Conference on Compiler Construction (CC "02).
Springer-Verlag, Berlin, Heidelberg, 179-196.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Alma-
hairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal
Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier
Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie,
Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian,
Xiaogqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xi-
ang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela
Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert
Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2: Open
Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]
https://arxiv.org/abs/2307.09288

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. Advances in neural information processing
systems 30 (2017).

Matthew Vilim, Alexander Rucker, and Kunle Olukotun. 2021. Au-
rochs: an architecture for dataflow threads. In Proceedings of the 48th
Annual International Symposium on Computer Architecture (Virtual
Event, Spain) (ISCA ’21). IEEE Press, 402-415. doi:10.1109/ISCA52012.
2021.00039

Matthew Vilim, Alexander Rucker, Yaqi Zhang, Sophia Liu, and Kunle
Olukotun. 2020. Gorgon: Accelerating Machine Learning from Rela-
tional Data. In 2020 ACM/IEEE 47th Annual International Symposium
on Computer Architecture (ISCA). 309-321. doi:10.1109/ISCA45697.
2020.00035

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze
Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai
Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang
Zhou, Jingren Zhou, and Junyang Lin. 2024. Qwen2-VL: Enhancing
Vision-Language Model’s Perception of the World at Any Resolution.
arXiv:2409.12191 [cs.CV] https://arxiv.org/abs/2409.12191

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo
Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Ly, et al. 2025.
Qwen3 technical report. arXiv preprint arXiv:2505.09388 (2025).
Nathan Zhang, Rubens Lacouture, Gina Sohn, Paul Mure, Qizheng
Zhang, Fredrik Kjolstad, and Kunle Olukotun. 2024. The Dataflow Ab-
stract Machine Simulator Framework. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA). 532-547.
doi:10.1109/ISCA59077.2024.00046

Yaqi Zhang, Nathan Zhang, Tian Zhao, Matt Vilim, Muhammad Shah-
baz, and Kunle Olukotun. 2021. SARA: scaling a reconfigurable
dataflow accelerator. In Proceedings of the 48th Annual International
Symposium on Computer Architecture (Virtual Event, Spain) (ISCA *21).

https://doi.org/10.1109/HPCA57654.2024.00016
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2408.00741
https://arxiv.org/abs/2408.00741
https://arxiv.org/abs/2408.00741
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.1109/ISCA52012.2021.00039
https://doi.org/10.1109/ISCA52012.2021.00039
https://doi.org/10.1109/ISCA45697.2020.00035
https://doi.org/10.1109/ISCA45697.2020.00035
https://arxiv.org/abs/2409.12191
https://arxiv.org/abs/2409.12191
https://doi.org/10.1109/ISCA59077.2024.00046

[42]

IEEE Press, 1041-1054. doi:10.1109/ISCA52012.2021.00085

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xu-
anzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe: disaggregating
prefill and decoding for goodput-optimized large language model serv-
ing. In Proceedings of the 18th USENIX Conference on Operating Systems
Design and Implementation (Santa Clara, CA, USA) (OSDI’24). USENIX
Association, USA, Article 11, 18 pages.

A Appendix
A.1 STeP Operator Syntax and Shape Semantics

This section contains the syntax and shape semantics of STeP
operators. We express stream types in the form of Strm<T, a>
where T is the data type of the stream and a is the rank of the
stream. We will use uppercase letters in the angle brackets
(<,>) to denote the data type of the stream and lowercase
letters for the stream rank.

We use different uppercase letters to express the available
data types for each operator.
R,R’: Any data type
A,B: Non-buffer type
S: Statically sized tile
SEL: Selector type
I: [1,1] tile of integer address data type.

For dynamic routing and merging operators (Table 5), the
subscript i in the input and output stream shape is used to
specify the shape of the i-th input or output stream. For
the Reshape operator, when splitting a dimension higher
than the innermost (scalar) dimension, it should be a static
dimension divisible by the chunk size. When splitting the
innermost (scalar) dimension, there is no restriction on the
dimension shape, and it will be accordingly padded.

A.2 Hierarchical Tiling

When mapping to the HDL simulator described in Section 4.3,
we apply hierarchical tiling to the tiles in each stream. The
larger logical tiles defined at the STeP level are partitioned
into smaller physical tiles that match the fabric’s compute
tile size. Figure 12 shows an example graph transformation
for hierarchical tiling. As shown in the graph, STeP oper-
ators and the shape semantics can also be used to express
hierarchical tiling.

[4, 1, 16] [4, 2, 16]
[16,16] [16,16]
N2 ¥
‘ Bufferize ‘ Bufferize

[4] [4] rani{zl rani<:2

[16,256] [32,256] Repeat Repeat

p ¥ count=2 count=1
Map

fn=A x BT

becdmes [Stre:mify } [Stre:mify }

[4] [4,1,2,16] " Map ¥4, 1,2, 16]
[16,32] [16,16] [16,16]

Accum

rank=1
fn =ElemAdd

[4, 1, 2]
[16, 16]

Figure 12. Conversion of STeP A x B! map node of large
tile size to smaller tile size.

https://doi.org/10.1109/ISCA52012.2021.00085

Operator Signature In Stream Shape Out Stream Shape

LinearOffChipLoad<S,R,a,b> (ref: Strm<R,b>, base_addr: int, [Dp, -+, Do] [Dp, -+, Dy,
tiled_in_shape: [int], D! _.,--+.,Dg]
stride: [int], tiled_out_shape: [int]) (a=|tiled_in_shape|)
— Strm<S, a+b>

LinearOffChipStore<S,a> (in: Strm<S,a>, base_addr: int) [Dg—1,+ -+, Do]

RandomOffChipLoad<I,S,a,b> (raddr: Strm<I,a>, base_addr: int, [Dg,- -+, Dol [Dg, -+, Dol
tiled_in_shape: [int]) — Stream<s,a>

RandomOffChipStore<I,S,a,b> (waddr: Strm<I,b>, wdata: Strm<S,b>, [Dg,- -+, D] (waddr) [Dg,---,Dg]

base_addr: int, tiled_in_shape: [int]) [D,’),~~-,D(’)] (wdata)
— Stream<bool, a>

Table 2. STeP off-chip memory operators. The square brackets in the operator signature express a list type.

Operator Signature In Stream Shape Out Stream Shape
Bufferize<S,a,b> (in: Strm<S,a>) — Strm<Buffer<S,b>,a-b> [Dg,- -+, Dy, [Dg, -+, Dp]
Dp_1,- -, Dol (buffer: [Dp_1,- -, Dol)
Streamify<S,R,a,b,c> (in: Strm<Buffer<S,a>,b>, ref: Strm<R,b+c>, [Dy,---,Do] (data) [Dy,---,Do,D;_,,---,Dy,
stride: [int], out_shape: [int]) [Dp, -+, Dy, Dl,t/)utfshapel—l"u Dy’
— Strm<S, |out_shape|+b+c> D!_,,--+,Dg] (ref)

Table 3. STeP on-chip memory operators. For Streamify, if the buffer is dynamically-sized, |out_shape]| is replaced with a.

Operator Signature In Stream Shape Out Stream Shape
Map<A,B,a> (in: Strm<A,a>, fn: Fn(A)— B) — Strm<B,a> [Dg, -+, Do] [Dg,- -+, Do)
Accum<A,R,a,b> (in: Strm<A,a>, update_fn: Fn(A,R)—R, [Dg, -+, Dp, [Dg,- -+, Dpl
init_fn: Fn()—R) — Strm<R,a-b> Dy_1,-++, Do)
Scan<A,B,a,b> (in: Strm<A,a>, update_fn: Fn(A,B) — B, [Dg, -+, Dp, [Dg, -+, Dp,
init_fn: Fn() — B) — Strm<B,a> Dp_1,-++,Do] Dp_1,-++, D]

FlatMap<A,B,a,b> (in: Strm<A,a>, fn: Fn(A)—>Strm<B,b>) — Strm<B,a+b> [D,,---, Dy, Dy] [Da,-~,D1,D;,-~~,D6]
Table 4. STeP higher-order operators.

Operator Signature In Stream Shape Out Stream Shape
Partition<R,SEL,a,b> (in: Strm<R,a>, sel: Strm<SEL,b>, [Da, -+ ,Do] (in) [D! ,.D! , .-~ ,Dgl;
num_consumers: int) — [Strm<R,a-b>] [D,---,D._p] (sel)
Reassemble<R,SEL,a,b> (in: [Strm<R,a>], [D;,---,Dgl (sel) [D;,- -, Dy,
sel: Strm<SEL,b>) — Strm<R,a+b+1> [D.,D! ,,---,Dil; (in) D3, Dy_y,-+-, Do)
EagerMerge<R,SEL,a> (in: [Strm<R,a>]) [D;.D: .-+, Dyl [>iD.Dyoy,- -+, Do) (data)
— Strm<R,a>, Strm<SEL,0> [>:D.] (sel)

Table 5. STeP routing and merging operators.

Operator Signature In Stream Shape Out Stream Shape
Flatten<R,a,min,max> (in: Strm<R,a>) — Strm<R,a-(max-min)> [Dg, -, Dmaxs*"" » [Dg, -+, Dnews -+ » Dol
Dmina N DO] (DHEW = H:Z‘rlrme')
Reshape<R,a,b> (in: Strm<R,a>, chunk_size: int, [Dg, -+, Dp, [Dg---, l(DbT#J .S,
pad: Option<R>) Dy_y -+, Do] Dy_y+++,Do] (data, padding)
— Strm<R,a+1>, Strm<bool,a+1> (S = chunk_size)
Promote<R,a> (in: Strm<R,a>) — Strm<R,a+1> [Dg, -+, Do] [Dg41, D, - -+, Do
(Das1 = (1if (Dg > 0) else 0))
Expand<R’ ,R,a> (in: Strm<R’,a>, ref: Str<R,a>, b: int) [Da, -+, 1p, -+, 10] (data) [Da>-*»Dp, -+, Dol
b: int) — Strm<R’,a> [Da,-++, Dy -+, Do (ref
Zip<R,R’,a> (in1: Strm<R,a>, in2: Str<R’,a>)—Strm<(R,R’),a> [Dg,---,Do] (in1,in2) [Dg,- -+, Do]

Table 6. STeP shape operators.

16

A.3 Configuration Time-multiplexing

To apply the configuration time-multiplexing optimization,
the EagerMerge operator will send the tokens collected for
each expert to the consumer as soon as they arrive. The
graph conversion to apply this optimization can be found in
Figure 13. The Expert node in the graph can be seen as a STeP
subgraph for expert computation. The LinearOffChipLoads
used in the expert subgraph to load expert weights will be
replaced with a RandomOffChipLoad which uses the selector
from EagerMerge as the expert weights to load are deter-
mined in runtime.

17

Reshape | Accum

:l:: Eager

Partiton Merge @eﬂ
Reshape | Accum

(a) With configuration time-multiplexing

Reshape | Accum i—v Expert
Partiton
Reshape | Accum i—* Expert

(b) Without configuration time-multiplexing

Figure 13. STeP graph with (a) and without (b) configuration
time-multiplexing.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Dynamism in ML
	2.2 Spatial Dataflow Accelerators
	2.3 Programming abstractions for SDAs

	3 Streaming Tensor Program
	3.1 Stream-centric Design
	3.2 STeP operators

	4 Symbolic STeP Frontend and Performance Model
	4.1 Symbolic Frontend
	4.2 Performance Model for the Simulator
	4.3 Validation

	5 Evaluation
	5.1 Methodology
	5.2 Dynamic Tiling
	5.3 Configuration Time-multiplexing
	5.4 Dynamic Parallelization

	6 Discussion on supporting dynamic STeP features in SDAs
	6.1 Stop Tokens
	6.2 Dynamic Routing and Merging
	6.3 Dynamic memory and tiling

	7 Conclusion
	8 Acknowledgments
	References
	A Appendix
	A.1 STeP Operator Syntax and Shape Semantics
	A.2 Hierarchical Tiling
	A.3 Configuration Time-multiplexing

